• 제목/요약/키워드: Newton-Euler

검색결과 59건 처리시간 0.036초

Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth

  • JangRyong Shin
    • 한국해양공학회지
    • /
    • 제37권6호
    • /
    • pp.256-265
    • /
    • 2023
  • Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total error was smaller, with a faster convergence speed.

Analysis of the Antenna Pointing Instability of a Satellite in Spin-Stabilized Injection Mode

  • Kang, Ja-Young;Shin, Kwang-Keun
    • ETRI Journal
    • /
    • 제16권2호
    • /
    • pp.27-41
    • /
    • 1994
  • A new mathematical model to predict the beam pointing instability of a nonconservative two-body satellite system in spinning injection mode has been developed by using Newton-Euler and projection methods. Since the on-axis and null axis of the omni antenna with toroidal pattern beam form a right angle, wobbling of the antenna on-axis is measured by determining the Euler angles which represent the orientation of the satellite's spin axis. Because of the complexity of the system which is a time varying, nonstationary, nonlinear dynamical system, a numerical method is used for the analysis. Computer simulation results present the effects of the mass distribution and internal mass motion on the antenna beam pointing.

  • PDF

로보트 매니퓰레이터의 비집중 적응제어에 관한 연구 (A study on decentralized adaptive control of robot manipulator)

  • 이상철;박성기;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.183-187
    • /
    • 1989
  • This paper presents on approach to the position control of a robot manipulator by using a decentralized adaptive control scheme. The large scale system is regarded as the system which consists of many subsystems having interconnection. In each subsystem, a local control system is composed by feedforward and feedback component, one computes the nominal torque from the Newton-Euler equation, the other computes the perturbation equation which reduce the position error of the manipulator along the nominal trajectory. A computer simulation studies was conducted to evaluate and compare the performances of the proposed manipulator control scheme with those of the PD control and centralized control schemes.

  • PDF

CONSEQUENCE OF BACKWARD EULER AND CRANK-NICOLSOM TECHNIQUES IN THE FINITE ELEMENT MODEL FOR THE NUMERICAL SOLUTION OF VARIABLY SATURATED FLOW PROBLEMS

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권2호
    • /
    • pp.197-215
    • /
    • 2015
  • Modeling water flow in variably saturated, porous media is important in many branches of science and engineering. Highly nonlinear relationships between water content and hydraulic conductivity and soil-water pressure result in very steep wetting fronts causing numerical problems. These include poor efficiency when modeling water infiltration into very dry porous media, and numerical oscillation near a steep wetting front. A one-dimensional finite element formulation is developed for the numerical simulation of variably saturated flow systems. First order backward Euler implicit and second order Crank-Nicolson time discretization schemes are adopted as a solution strategy in this formulation based on Picard and Newton iterative techniques. Five examples are used to investigate the numerical performance of two approaches and the different factors are highlighted that can affect their convergence and efficiency. The first test case deals with sharp moisture front that infiltrates into the soil column. It shows the capability of providing a mass-conservative behavior. Saturated conditions are not developed in the second test case. Involving of dry initial condition and steep wetting front are the main numerical complexity of the third test example. Fourth test case is a rapid infiltration of water from the surface, followed by a period of redistribution of the water due to the dynamic boundary condition. The last one-dimensional test case involves flow into a layered soil with variable initial conditions. The numerical results indicate that the Crank-Nicolson scheme is inefficient compared to fully implicit backward Euler scheme for the layered soil problem but offers same accuracy for the other homogeneous soil cases.

기호방정식을 이용한 3차원 연쇄기구 운동해석의 일반화 (Generalized Kinematic Analysis for the Motion of 3-D Linkages using Symbolic Equation)

  • 김호룡
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.102-109
    • /
    • 1986
  • 본 연구에서는 앞의 여러 연구자들이 시도한 3차원 연쇄기구의 운동해석법을 비교 검토하고, 이중 기호방정식을 이용하여 3차원 연쇄기구의 운동해석을 일반화 하고져 한다. 또 품질향상, 대량생산(mass production) 및 생산가 절하를 위해 만족시키기 위해, 기본해석모델인2차원 연쇄기구에서 3차원연쇄기구로 정밀화 하면서, 가능한 모든 3차원 연쇄기구의 복잡화 되고 있는 현대 기계의 운동요구를 만족시키기 위해, 기본해석모델인 2차원 연쇄기구에서 3차원연쇄기구로 정밀화 하면서, 가능한 모든 3차원 연쇄기구의 운동을 해석 하기 위한 일반해석법을 개발하므로써 해석을 일반화 시키고, 그것을 컴퓨터로 시뮬레이션하여 운동해석을 신빙성있고 신속하게 수행토록 하며, 컴퓨터 결과를 실제모형 즉 구면 4-R 연쇄기구, R-S-S-R 기구 및 3C-R 기구등을 제작하여,실제결과와 비교 검토하므로써 개발된 일반운동해석법의 타당성을 실험적으로 입증 비교 검토하므로써 일반운동해석법의 타당성을 실험적으로 입증하려 한다.

변형률 공간에서 변형률속도 및 온도를 고려한 구성방정식의 개선된 적분방법 (Modified Integration Algorithm on the Strain-Space for Rate and Temperature Dependent Elasto-Plastic Constitutive model)

  • 조상순;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.272-275
    • /
    • 2007
  • This paper is concerned with modified integration algorithm on the strain-space for rate and temperature dependent elasto-plastic constitutive relations in order to obtain more accurate results in numerical implementation. The proposed algorithm is integrated analytically using integration by part and chain rule and then is applied to the 2-stage Lobatto IIIA with second-order accuracy. It has advantage that is able to consider the convective stress rates on the yield surface of the strain-space. Also this paper is carried out the iteration procedure using the Newton-Raphson method to enforce consistency at the end of the step. And the performance of the proposed algorithm for rate and temperature dependent constitutive relation is illustrated by means of analysis of adiabatic shear bands.

  • PDF

자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어 (Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation)

  • 이세한;강재관;김용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

다수 체인과 다중 접촉 성격을 지닌 발 메커니즘에 대한 충격량 흡수 기반 해석 (Analysis of Multi-Chained and Multiple Contact Characteristics of Foot Mechanisms in Aspect of Impulse Absorption)

  • 서종태;오세민;이병주
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.161-172
    • /
    • 2017
  • Foot mechanisms play the role of interface between the main body of robotic systems and the ground. Biomimetic design of the foot mechanism is proposed in the paper. Specifically, multi-chained and multiple contact characteristics of general foot mechanisms are analyzed and their advantages are highlighted in terms of impulse. Using Newton-Euler based closed-form external and internal impulse models, characteristics of multiple contact cases are investigated through landing simulation of an articulated leg model with three kinds of foot. It is shown that in comparison to single chain and less articulated linkage system, multi-chain and articulated linkage system has superior characteristic in terms of impulse absorption as well as stability after collision. The effectiveness of the simulation result is verified through comparison to the simulation result of a commercialized software.

보행 중 하지 관절의 역동역학 해석 (An Inverse Dynamic Analysis of Lower Limbs During Gait)

  • 송성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권4호
    • /
    • pp.301-307
    • /
    • 2004
  • 보행 중 각 관절의 모멘트를 계산하기 위한 역동역학 모델을 개발하였다. 모델은 1개의 상체와 3개의 체절로 하지를 구성하였고 3개의 병진 조인트와 12개의 회전조인트로 각 체절을 연결하고 뉴턴-오일러 방법으로 역동역학 해를 구하였다. 입력자료로서의 기구학적 사료는 3차원 동작분석 시스템에서 추출하였고 외력으로서 지면 반발력은 동기화한 힘측정판에서 구했다. 개발된 모델을 이용하여 비대칭 모델이나 질량중심의 이동을 포함한 해석 등 다양한 인체운동 해석이 가능하다.

Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.319-334
    • /
    • 2010
  • The dynamic response of a finite Bernoulli-Euler beam resting on a tensionless Pasternak foundation and subjected to a concentrated harmonic load is investigated in this study. This load may be applied at the center of the beam, or it may be offset from the center. Since the elastic foundation is assumed to be tensionless, the beam may lift off the foundation, resulting in contact and non-contact regions in the system. An analytical/numerical solution is obtained from the governing equations of the contact and non-contact regions to determine the coordinates of the lift-off points. Although there is no nonlinear term in the equations, the problem appears to be nonlinear since the contact regions are not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The results, which represent the symmetric and asymmetric responses of the beam, are presented graphically in this work. They illustrate the effects of the forcing frequency and the beam length on the extent of the contact regions and displacements.