본 연구는 인터넷 뉴스 댓글 빅데이터 분석을 통해 뉴스 댓글 사용자의 정치적 성향을 추정하는 방법을 제안한다. 인터넷 뉴스 댓글과 작성자의 정치 성향을 함께 제공하여 디지털 매체를 통한 정보 전달의 객관성과 중립성을 확보하고자 한다. 250만 건 이상의 인터넷 뉴스 댓글의 특성을 분석하고 사용자의 정치적 성향을 효과적으로 추정하기 위한 특징을 추출한다. 어휘사전 기반 알고리즘과 유사도 기반 알고리즘을 제안하고 실험을 통해 두 알고리즘을 비교하고 효과를 검증한다.
온라인 뉴스에서 개인의 참여가 활성화 되면서 댓글의 중요성이 부각되고 있다. 최근엔 개인의 SNS(social networking site) 계정을 이용하여 댓글을 게재할 수 있는 소셜댓글 서비스가 활성화 되고 있다. 본 연구에서는 실제 온라인 뉴스 댓글 현황 데이터를 이용하여 (1) 댓글의 일반적 특성요소 중 일반댓글과 소셜댓글이 차이점을 보일 가능성이 있는 요소를 도출한 후, (2) 일반댓글에 비해 소셜댓글이 각 특성요소별로 어떻게 다른지 비교 분석하고, 마지막으로 (3) 소셜댓글 이용 업체별로 각 특성요소가 어떻게 달라지는지를 실증 분석해보았다. 이를 위해 기존문헌 조사 및 전문가 인터뷰를 진행하여 여섯 가지 특성요소를 도출하였다. 다음으로 SPSS Statistics의 t-test의 분석 방법을 사용하여, 소셜댓글과 일반댓글이 모든 요소에서 유의한 차이를 보임을 확인하였고, ANOVA와 Duncan test 결과 트위터와 페이스북 그룹 간 차이가 유의함을 확인하였다. 본 연구를 통해 소셜댓글의 실제적인 가치를 명확히 파악할 수 있을 뿐만 아니라, 소셜댓글을 이용한 악성댓글 문제 해결에 실마리를 제공하고, 개인, 기업, 정부기관 등을 주체로 다른 분야의 적용가능성도 살펴볼 수 있을 것으로 기대한다.
정치적 사안에 대한 대중의 의견과 인식을 객관적으로 이해하기 위한 방법으로 텍스트 마이닝을 통한 빅데이터 분석을 수행할 수 있다. 기존 어휘 사전에 기반한 텍스트 마이닝 알고리즘은 신조어와 같이 사전에 수록되지 않은 어휘를 분석하는데 한계가 나타난다. SNS를 통해 나타나는 사용자들의 의견은 많은 경우 신조어와 비속어를 포함하는데, 이러한 어휘들을 효과적으로 분석하지 못한다면 정확한 대중의 인식과 의견을 파악하기 어렵게 된다. 본 논문은 정치 섹션의 뉴스 댓글로부터 정치적 의미성을 지니는 신조어와 비속어를 효과적으로 추출하는 방법을 제안하고, 추출한 신조어휘들의 의미와 맥락을 이해하기 위한 다양한 방법을 제시하였음.
Traditionally, news was consumed only through printed newspapers and broadcasting media, such as radio and television. However, the Internet has enabled people to consume news content online. Since most of online news content has been provided for free, it is not easy for news providers to charge the fixed subscription fee for online news content. Therefore, as an alternative strategy, some online news providers have tried to adopt the Pay-What-You-Want (PWYW) pricing model, which allows users (readers) to pay as much as they want after consuming news content. As this pricing model shows some possibility to grow and replace the unsuccessful monetization strategy of online news content, we therefore examined the comparative importance of seven heuristic attributes (i.e., article evaluation, article share, article comment, article information design, article length, writer SNS, and writer information) affecting readers' voluntary payment behavior through a conjoint analysis with 379 news articles collected from online news Website (i.e., Ohmynews.com) where the PWYW model has been working successfully. This study found that article share and article length are the most important factors which affect online news content users' voluntary payment. Finally, two major and eight minor propositions are suggested based on the findings of the study. This study would suggest guidelines for how to create online news content which induces much more voluntary payment.
오늘날 인터넷 사용자들은 블로그나 뉴스, 인터넷 게시판 등의 매체에서 댓글을 통해 다른 사람의 의견을 살피고 자신의 의견을 나타내고 있다. 그러나 현재 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 사용자가 원하는 내용의 댓글을 검색하거나 살펴보는 것은 힘든 일이다. 또한 댓글 사용자가 증가함에 따라 스팸 댓글이나 악플 등이 사회 문제가 되기도 한다. 본 논문에서는 다음 아고라(Daum AGORA) 웹 블로그의 게시글과 댓글을 통계적으로 분석하고 유사도를 기반으로 클러스터링하는 시스템을 제안한다. 본 시스템은 클러스터링 결과를 시각화하여 간단한 스크린 뷰(screen view)로 보여준다. 또한, 본 시스템은 생물정보학에서 잘 알려진 정렬 기법인 Needleman-Wunsch 알고리즘을 이용해 스팸 댓글을 필터링한다.
최근 빅데이터 분석은 대량의 데이터로부터 미래를 예측하여 가치를 창출할 수 있어 다양한 분야에서 주목받고 있으며, 정치 캠페인 운영이나 결과 예측에도 활용되고 있다. 하지만 기존의 연구는 특정 SNS 데이터만을 분석하여 후보자들에 대한 정보를 취합하는데 한계가 있었다. 이에 본 연구는 2017년 한국 대선 후보별 뉴스와 댓글을 수집하여 뉴스 생성 추이, 토픽 추출, 감성 분석, 키워드 분석, 키워드 감성 분석을 하였다. 분석 결과, 대선 후보 간 다양한 토픽들이 생성되는 것을 확인하였으며, 후보별 이슈가 되는 중점 키워드와 이에 대한 유권자들의 호응도가 추출되었다. 본 연구는 포털 뉴스에서 생성되는 대선 캠페인에 대한 동향을 마이닝 할 수 있게 했다는 점과 감성 분석을 통해 대권주자들에 대한 유권자들의 관심과 의견들을 정량화하여 수치화한 것에 의의가 있다. 본 연구가 여론 수렴의 도구적 방법을 제시함으로써 이를 바탕으로 전략적인 행동 방안을 도출할 수 있을 것을 기대한다.
Purpose Recently, as a new business marketing tool, short form content focused on fun and interest has been shared as hashtags. By extracting positive and negative keywords from media audiences through comment analysis of social media news, various stakeholders aim to quickly and easily grasp users' opinions on major news. Design/methodology/approach YouTube videos were searched using the YouTube Data API and the results were collected. Video comments were crawled and implemented as HTML elements, and the collection results were checked on the web page. The collected data consisted of video thumbnails, titles, contents, and comments. Comments were word tokenized with the R program, comparing positive and negative dictionaries, and then quantifying polarity. In addition, social network analysis was conducted using divided positive and negative comments, and the results of centrality analysis and visualization were confirmed. Findings Social media users' opinions on issue news were confirmed by analyzing and visualizing the centrality of keywords through social network analysis by dividing comments into positive and negative. As a result of the analysis, it was found that negative objective reviews had the highest effect on information usefulness. In this way, previous studies have been reaffirmed that online negative information has a strong effect on personal decision-making. Corporate marketers will analyze user comments on social network services (SNS) to detect negative opinions about products or corporate images, which will serve as an opportunity to satisfy customers' needs.
In South Korea, as awareness of gender equality increased since the 1990s, policies for gender equality and social awareness of equality have been established. Until recently, however, the gap between men and women in social and economic activities has not reached the globally desired level and led to social conflict throughout the country. In this study, we analyze the content of online news comments to understand the public perception of gender equality and the details of gender conflict and to grasp the emergence and diffusion process of emerging issues on gender equality. We collected text data from the online news that included the word 'gender equality' posted from January 2012 to June 2017 and also collected comments on each selected news item. Through text mining and the temporal semantic network analysis, we tracked the changes in discourse on gender equality and conflict. Results revealed that gender conflicts are increasing in the online media, and the focus of conflict is shifting from 'position and role inequality' to 'opportunity inequality'.
As a public medium and one of the big data sources that is accumulated informally and real time, online news comments or replies are considered a significant resource to understand mentalities of article readers. The comments are also being regarded as an important medium of WOM (Word of Mouse) about products, services or the enterprises. If the diffusing effect of the comments is referred to as the degrees of agreement and disagreement from an angle of WOM, figuring out which characteristics of the comments would influence the agreements or the disagreements to the comments in very early stage would be very worthwhile to establish a comment-based eWOM (electronic WOM) strategy. However, investigating the effects of the characteristics of the comments on eWOM effect has been rarely studied. According to this angle, this study aims to conduct an empirical analysis which understands the characteristics of comments that affect the numbers of agreement and disagreement, as eWOM performance, to particular news articles which address a specific product, service or enterprise per se. While extant literature has focused on the quantitative attributes of the comments which are collected by manually, this paper used text mining techniques to acquire the qualitative attributes of the comments in an automatic and cost effective manner.
온라인 뉴스에 개인의 참여가 활성화되면서 댓글의 중요성은 더욱 커지고 있다. 특히 이용자들에게 많은 공감을 받는 '베스트 댓글'은 주된 여론으로 인식되고 큰 영향력을 가진다. 따라서 본 연구는 온라인 뉴스 댓글 데이터를 이용하여 베스트 댓글의 특성을 알아보고자 하였다. 이를 위해 일반 댓글과 차이점을 보일 가능성이 있는 요소를 설정 후, 데이터를 수치화하여 일반 댓글과 베스트 댓글의 차이를 분석하였다. 본 연구는 최근 댓글 조작 등의 문제 해결에 실마리를 제공하고 개인 및 학술단체, 정부기관 등을 주체로 하여금 기초 자료로 활용될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.