• Title/Summary/Keyword: News Data

Search Result 890, Processing Time 0.023 seconds

Joint Hierarchical Semantic Clipping and Sentence Extraction for Document Summarization

  • Yan, Wanying;Guo, Junjun
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.820-831
    • /
    • 2020
  • Extractive document summarization aims to select a few sentences while preserving its main information on a given document, but the current extractive methods do not consider the sentence-information repeat problem especially for news document summarization. In view of the importance and redundancy of news text information, in this paper, we propose a neural extractive summarization approach with joint sentence semantic clipping and selection, which can effectively solve the problem of news text summary sentence repetition. Specifically, a hierarchical selective encoding network is constructed for both sentence-level and document-level document representations, and data containing important information is extracted on news text; a sentence extractor strategy is then adopted for joint scoring and redundant information clipping. This way, our model strikes a balance between important information extraction and redundant information filtering. Experimental results on both CNN/Daily Mail dataset and Court Public Opinion News dataset we built are presented to show the effectiveness of our proposed approach in terms of ROUGE metrics, especially for redundant information filtering.

Grammatical Structure Oriented Automated Approach for Surface Knowledge Extraction from Open Domain Unstructured Text

  • Tissera, Muditha;Weerasinghe, Ruvan
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.113-124
    • /
    • 2022
  • News in the form of web data generates increasingly large amounts of information as unstructured text. The capability of understanding the meaning of news is limited to humans; thus, it causes information overload. This hinders the effective use of embedded knowledge in such texts. Therefore, Automatic Knowledge Extraction (AKE) has now become an integral part of Semantic web and Natural Language Processing (NLP). Although recent literature shows that AKE has progressed, the results are still behind the expectations. This study proposes a method to auto-extract surface knowledge from English news into a machine-interpretable semantic format (triple). The proposed technique was designed using the grammatical structure of the sentence, and 11 original rules were discovered. The initial experiment extracted triples from the Sri Lankan news corpus, of which 83.5% were meaningful. The experiment was extended to the British Broadcasting Corporation (BBC) news dataset to prove its generic nature. This demonstrated a higher meaningful triple extraction rate of 92.6%. These results were validated using the inter-rater agreement method, which guaranteed the high reliability.

Estimating volatility of American tourist demand with a pleasure purpose in Korea inbound tourism market (방한 미국여행객의 국제 수요변동성 분석)

  • Kim, Kee-Hong
    • International Commerce and Information Review
    • /
    • v.10 no.1
    • /
    • pp.395-414
    • /
    • 2008
  • The objective of this study is to introduce the concepts and theories of conditional heteroscedastic volatility models and the news impact curves and apply them to the Korea inbound tourism market. Three volatility models were introduced and used to estimate the conditional volatility of monthly arrivals of inbound tourists into Korea and news impact curves according to the three models. Results of this study are as follows. As the proportion of American tourists occupied a large amount of Korea inbound tourism market, the markets' forecasting is very important. The news impact curves which used EGARCH model (1,1) and TGARCH model(1,1), with data on these tourists to Korea showed an asymmetry effect of volatility. It was common that bad news means that it was estimated more sensitively than good news. From these results, we will notice that American tourists who visited Korea only for tourism are affected by good news. The result suggests that the Korea government and tourism industry should pay more attention to changes in the tourism environment following bad news because conditional volatility increases more when a negative shock occurs than when a positive shock occurs.

  • PDF

Comparative Analysis of Mainstream O1line News Use with Alternative Online News Use -In the Aspens of the Users' Characteristics, the Attitude on Online News Sites, and Using Pattern.- (주류 인터넷 언론과 대안 인터넷 언론의 이용 비교 -이용집단의 특성, 이용자의 뉴스사이트에 대한 태도 뉴스 이용 패턴-)

  • Park, Sun-Hee
    • Korean journal of communication and information
    • /
    • v.26
    • /
    • pp.259-289
    • /
    • 2004
  • In this study, the use of mainstream online news site and alternative online news site were compared in the aspects of users' characteristics, attitude on online news sites, and using pattern. A survey was conducted for 182 mainstream-only users, 46 alternative online news users, and 47 both sites users, Also, their traffic data of online news sites were analyzed during the 16th presidential election. As a result, it was found that both sites users had the highest political interest and the most progressive political position among the user groups. In the aspect of users' attitude, mainstream-only users were most positive to the mainstream online news site and both sires users were most positive and more involved in alternative online news site. But all user groups set higher credibility on alternative online news site than mainstream online news sire. In the comparison of user size, mainstream online news site has larger user size than alternative online site. However, the user royalty, such as time per person, pages per person, and visiting days per person, was lower than that of the latter. These results suggest thar small but differentiated news sires have royal users, and online news users be segmented according to news contents.

  • PDF

A Study of Users' Ideological Propensity in the Comments of Online News: Focusing upon the Stories of the Web Portal Sites and the Press Website News Related to the 20th presidential Election (온라인 뉴스 댓글에 나타난 뉴스 이용자들의 이념적 성향에 관한 연구: 포털과 언론사닷컴의 20대 대선 관련 뉴스기사를 중심으로)

  • Kwang Soon Park;Jong Mook Ahn
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.135-143
    • /
    • 2022
  • This paper aims to grasp what propensity users have in their ideology from the comments in the Web Portal News and the Press Website News. Through these analytical results, the political propensities of not only the Web Portal News and the Press Website News but also the voters who use these news media could be grasped. The collection of data necessary for this study has been made from the comments of 174 news stories for about 90 days before the election day. For the analysis, T-test has been used in order to compare Naver News with Daum News, the Minjoo Party of Korea with the People Power Party, and the Press Web Site News with Naver News. As a result of the analysis, the comments of Naver News took the higher percentage in the positive writings about the candidates of the conservative party. but, in contrast, those of Daum News in that percentage were higher about the ones of the progressive party. Accordingly, it can be found that Naver News is mainly used by users with the politically conservative propensity, while Daum News is mostly used by those with progressive one.

Design and Implementation of a news Archive System using Shot Types (샷의 타입을 이용한 뉴스 아카이브 시스템의 설계 및 구현)

  • Han, Keun-Ju;Nang, Jong-Ho;Ha, Myung-Hwan;Jung, Byung-Hee;Kim, Kyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.416-428
    • /
    • 2001
  • In order to build a news archive system. the news video stream should be first segmented into several articles, ad their contents are abstracted effectively. This abstraction helps the users to understand the contents of the article without playing the whole video stream. This paper proposes a new article boundary detection scheme for the news video streams together with a new news article abstraction scheme using the shot types of the news video data. The shots in the news video are classified into anchor person shots, interview shots, speech shots, reporting shots, graphic shots, and others. Since the news article starts with an anchor shot whose duration is relatively longer than other shots with special screen structure, the article boundary in detected by the computing the length of the shot and checking the screen structure in the proposed scheme. For the effective abstraction of the article video, the graphic image located in the right-top of the anchor shot frames is primarily used in the proposed abstraction scheme since it is the abstraction of the article made by the producer of the news according to its contents so that it contains a lot of meaningful information. The key frames of the other shots except interview and report shots are also used to abstract the contents of the articles in the proposed scheme. Upon experimental results, the precision and recall values of the proposed article boundary detection scheme could be 92% and 96%, respectively. This paper also presents a design and implementation of a prototype news archive system on WWW that consists of an indexing tool, an authoring tool, a database for meta-data of the news, and a browsing tool.

  • PDF

A Study on Automated Fake News Detection Using Verification Articles (검증 자료를 활용한 가짜뉴스 탐지 자동화 연구)

  • Han, Yoon-Jin;Kim, Geun-Hyung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.569-578
    • /
    • 2021
  • Thanks to web development today, we can easily access online news via various media. As much as it is easy to access online news, we often face fake news pretending to be true. As fake news items have become a global problem, fact-checking services are provided domestically, too. However, these are based on expert-based manual detection, and research to provide technologies that automate the detection of fake news is being actively conducted. As for the existing research, detection is made available based on contextual characteristics of an article and the comparison of a title and the main article. However, there is a limit to such an attempt making detection difficult when manipulation precision has become high. Therefore, this study suggests using a verifying article to decide whether a news item is genuine or not to be affected by article manipulation. Also, to improve the precision of fake news detection, the study added a process to summarize a subject article and a verifying article through the summarization model. In order to verify the suggested algorithm, this study conducted verification for summarization method of documents, verification for search method of verification articles, and verification for the precision of fake news detection in the finally suggested algorithm. The algorithm suggested in this study can be helpful to identify the truth of an article before it is applied to media sources and made available online via various media sources.

COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech (품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지)

  • Jihyeok Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.267-283
    • /
    • 2023
  • The COVID-19 pandemic, which began in December 2019 and continues to this day, has left the public needing information to help them cope with the pandemic. However, COVID-19-related fake news on social media seriously threatens the public's health. In particular, if fake news related to COVID-19 is massively spread with similar content, the time required for verification to determine whether it is genuine or fake will be prolonged, posing a severe threat to our society. In response, academics have been actively researching intelligent models that can quickly detect COVID-19-related fake news. Still, the data used in most of the existing studies are in English, and studies on Korean fake news detection are scarce. In this study, we collect data on COVID-19-related fake news written in Korean that is spread on social media and propose an intelligent fake news detection model using it. The proposed model utilizes the frequency information of parts of speech, one of the linguistic characteristics, to improve the prediction performance of the fake news detection model based on Doc2Vec, a document embedding technique mainly used in prior studies. The empirical analysis shows that the proposed model can more accurately identify Korean COVID-19-related fake news by increasing the recall and F1 score compared to the comparison model.

An Automatic News Video Semantic Parsing Algorithm (뉴스 동영상 자동 의미 분석 알고리즘)

  • 전승철;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.109-112
    • /
    • 2001
  • This paper proposes an efficient algorithm of extracting anchor blocks for a semantic structure of a news video. We define the FRFD to calculate the frame difference of anchor face position rather than simply uses the general frame difference. Since, The FRFD value is sensitive to existing face in frame, anchor block can be efficiently extracted. In this paper, an algorithm to extract a face position using partial decoded MPEG data is also proposed. In this way a news video can be structured semantically using the extracted anchor blocks.

  • PDF

Object-Oriented Modeling of Metadata for Content-based Retrieval on News On Demand (News On Demand의 내용기반 검색을 위한 메타데이타의 객체지향 모델링)

  • 김용걸;이훈순;진성일;최동훈
    • Proceedings of the Korea Database Society Conference
    • /
    • 1997.10a
    • /
    • pp.463-471
    • /
    • 1997
  • 비디오 데이타는 다양하고 방대한 양의 의미를 포함하고 있어 효율적인 내용기반 검색을 지원하기 위해서는 비디오 데이타를 기술하는 구조적이고 체계화된 형태의 메타데이타가 요구된다. 이러한 메타데이타는 검색 시 색인과 같은 역할을 수행하게 되므로 내용 기반검색의 가장 기본적이고 필수적인 데이타이다. 본 논문에서는 뉴스 응용 분야(News On Demand:NOD)를 적용한 비디오 데이터베이스 시스템의 효율적인 내용 기반 검색을 위한 메타데이타를 분류하고, Rambaugh의 OMT기법을 이용하여 메타데이타를 모델링한 후 질의 유형에 따라 모델의 접근 경로를 검사하여 모델을 검증하였다.

  • PDF