• Title/Summary/Keyword: New spectra

Search Result 762, Processing Time 0.023 seconds

A Study on the Ignition and Molten Mark Analysis of Ballast for Fluorescent Lamp (형광등용 안정기의 발화 및 용융흔 분석에 관한 연구)

  • 최충석;박창수;김혁수;김향곤;정재희
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.173-177
    • /
    • 1998
  • In this paper, we reported an outbreak of fire hazard of ballast for fluorescent lamp. The surface structure and composition of ballast coil analyzed by using metallurgical microscope, scanning electron microscope(SEM) and energy dispersive x-ray spectroscopy(EDX). The surface of molten mark appeared columnar structure and void. EDX analysis indicated that the molten mark spectra were composed not only of the corresponding original spectra but also of several new lines.

  • PDF

Frequency Selective Recursive LP of Discrete Harmonic Spectra for Audio Cording

  • Nam, Seung-Hyon
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • n this paper, an efficient LP method for discrete harmonic spectra is proposed and discussed. A new efficient LP method is a combination of recursive and frequency selective LP. While the recursive LP provides better spectral matching in spectral hill, frequency selective LP eliminates numerical instability and improves spectral matching when the harmonics are confined in the low frequency region. The proposed LP method is applied to the HILN coder. Simulation results using a verification model(VM) software for real audio signals show a definite trend of significant improvement.

  • PDF

Laser-Induced Fluorescence Spectroscopy of the $S_1-S_0 (^1B_2-^1A_1)$ Transition of Dimethyldiazirine

  • 김택수;김상규;Choi, Young S.;곽일환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1042-1047
    • /
    • 1998
  • The fluorescence excitation (FE) spectrum of the S1-S0 (1B2-1A1) transition of dimethyldiazirine cooled in supersonic jet expansions has been obtained. Dispersed fluorescence (DF) spectra have also been taken for some prominent features of the FE spectrum. Vibrational analyses of the FE and DF spectra with the help of an ab initio molecular orbital calculation lead to some new vibrational assignments and refined fundamental frequencies.

A New Calibration Method Based on the Recursive Linear Regression with Variables Selection

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1241-1241
    • /
    • 2001
  • We propose a new calibration method, which uses the linearization method for spectral responses and the repetitive adoptions of the linearization weight matrices to construct a frature. Weight matrices are estimated through multiple linear regression (or principal component regression or partial least squares) with forward variable selection. The proposed method is applied to three data sets. The first is FTIR spectral data set for FeO content from sinter process and the second is NIR spectra from trans-alkylation process having two constituent variables. The third is NIR spectra of crude oil with three physical property variables. To see the calibration performance, we compare the new method with the PLS. It is found that the new method gives a little better performance than the PLS and the calibration result is stable in spite of the collinearity among each selected spectral responses. Furthermore, doing the repetitive adoptions of linearization matrices in the proposed methods, uninformative variables are disregarded. That is, the new methods include the effect of variables subset selection, simultaneously.

  • PDF

Spectra Responsibility of Quantum Dot Doped Organic Liquid Scintillation Dosimeter for Radiation Therapy

  • Kim, Sung-woo;Cho, Byungchul;Cho, Sangeun;Im, Hyunsik;Hwang, Ui-jung;Lim, Young Kyoung;Cha, SeungNam;Jeong, Chiyoung;Song, Si Yeol;Lee, Sang-wook;Kwak, Jungwon
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • The aim is to investigate the spectra responsibilities of QD (Quantum Dot) for the innovation of new dosimetry application for therapeutic Megavoltage X-ray range. The unique electrical and optical properties of QD are expected to make it a good sensing material for dosimeter. This study shows the spectra responsibility of toluene based ZnCd QD and PPO (2.5-diphenyloxazol) mixed liquid scintillator. The QDs of 4 sizes corresponding to an emission wavelength (ZnCdSe/ZnS:$440{\pm}5nm$, ZnCdSeS:470, 500, $570{\pm}5nm$) were utilized. A liquid scintillator for control sample was made of toluene, PPO. The Composition of QD loaded scintillators are about 99 wt% Toluene as solvent, 1 wt% of PPO as primary scintillator and 0.05, 0.1, 0.2 and 0.4 wt% of QDs as solute. For the spectra responsibility of QD scintillation, they were irradiated for 30 second with 6 MV beam from a LINAC ($Infinity^{TM}$, Elekta). With the guidance of 1.0 mm core diameter optical fiber, scintillation spectrums were measured by a compact CCD spectrometer which could measure 200~1,000 nm wavelength range (CCS200, Thorlabs). We measured the spectra responsibilities of QD loaded organic liquid scintillators in two scintillation mechanisms. First was the direct transfer and second was using wave shifter. The emission peaks from the direct transfer were measured to be much smaller luminescent intensity than based on the wavelength shift from the PPO to QDs. The emission peak was shifted from PPO emission wavelength 380 nm to each emission wavelength of loaded QD. In both mechanisms, 500 nm QD loaded samples were observed to radiate in the highest luminescence intensity. We observed the spectra responsibility of QD doped toluene based liquid scintillator in order to innovate QD dosimetry applicator. The liquid scintillator loading 0.2 wt% of 500 nm emission wavelength QD has most superior responsibility at 6 MV photon beam. In this study we observed the spectra responsibilities for therapeutic X-ray range. It would be the first step of innovating new radiation dosimetric methods for radiation treatment.

Study on Optimization of Fatigue Damage Calculation Process Using Spectrum (스펙트럼을 이용한 피로손상도 계산과정 최적화 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Offshore structures are exposed to low- and high-frequency responses due to environmental loads, and fatigue damage models are used to calculate the fatigue damage from these. In this study, we tried to optimize the main parameters used in fatigue damage calculation to derive a new fatigue damage model. A total of 162 bi-modal spectra using the elliptic equation were defined to describe the response of offshore structures. To calculate the fatigue damage from the spectra, time series were generated from the spectra using the inverse Fourier transform, and the rain-flow counting method was applied. The considered optimization variables were the size of the frequency increments, ratio of the time increment, and number of repetitions of the time series. In order to obtain optimized values, the fatigue damage was calculated using the parameter values proposed in previous work, and the fatigue damage was calculated by increasing or decreasing the proposed values. The results were compared, and the error rate was checked. Based on the test results, new values were found for the size of the frequency increment and number of time series iterations. As a validation, the fatigue damage of an actual tension spectrum found using the new proposed values and fatigue damage found using the previously proposed method were compared. In conclusion, we propose a new optimized calculation process that is faster and more accurate than the existed method.

Theoretically-based and practice-oriented formulations for the floor spectra evaluation

  • Abbati, Stefania Degli;Cattari, Serena;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.565-581
    • /
    • 2018
  • This paper proposes a new analytical formulation for computing the seismic input at various levels of a structure in terms of floor response spectra. The approach, which neglects the dynamic interaction between primary structure and secondary element, is particularly useful for the seismic assessment of secondary and non-structural elements. The proposed formulation has a robust theoretical basis and it is based on few meaningful dynamic parameters of the main building. The method has been validated in the linear and nonlinear behavior of the main building through results coming from both experimental tests (available in literature) and parametric numerical analyses. The conditions, for which the Floor Spectrum Approach and its simplified assumptions are valid, have been derived in terms of specific interval ratios between the mass of the secondary element and the participant mass of the main structure. Finally, a practice-oriented formulation has been derived, which could be easily implementable also at code level.

Identification of Europium(III) Hydroxide Formation by Eu(III) Luminescence Specroscopy

  • 이병호;박영재;문희정
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.654-657
    • /
    • 1995
  • A series of excitation spectra (7Fo→5Do transition) of Eu(Ⅲ) ion in aqueous solution ([Eu(Ⅲ)]=1.12 × 10-2 mol L-1; pH 1.0 to 7.0) were obtained under CO2 free atmosphere using a pulsed tunable dye laser system. The broad and low intensity spectra (peak maximum: 578.89 nm) showed that the trivalent ion (Eu3+) underwent a low degree of hydrolysis at pH below 6.0. Eu(Ⅲ) hydroxo complex formation seemed more significant at pH above 6.0, shown by the occurrence of intense new peak at 578.63 nm. The spectra of those solutions prepared in N2 atmosphere showed no signs of the presence of interfering carbonate species. The Eu(Ⅲ) hydroxo complex formation was not observed when complexation studies between Eu(Ⅲ) ion and weak organic acids (e.g. glutarate and diglycolate) were conducted at pH 6.0 or below.

Photohysical Properties of New Psoralen Derivatives:Psoralens Linked to Adenine through Polymethylene Chains

  • Yoo, Dong-Jin;Park, Hyung-Du;Kim, Ae-Rhan;Rho, Young S.;Shim, Sang-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1315-1327
    • /
    • 2002
  • The model compounds, 8-methoxypsoralen-CH2O(CH2)n-adenine (MOPCH2OCnAd, n=2, 3, 5, 6, 8, and 10) in which 5 position of 8-methoxypsoralen (8-MOP) is linked by various lengths of polymethylene bridge to N9 of adenine. UV absorption spectra are identical with the sum of MOPCH2OC3 and adenine absorption spectra. Solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the $(\pi${\rightarrow}$\pi*)$ state. The spectral characteristics of the fluorescence of MOPCH2OCnAd are strongly dependent upon the nature of the solvents. The fluorescence emission spectra in aprotic solvents are broad and structureless due to the excimer formation through the folded conformation accelerated by hydrophobic ${\pi}-{\pi}$ stacking interaction. Increasing polarity of the protic solvents leads to higher population of unfolded conformation stabilized through favorable solvation and H-bonding, and consequently to an increase in the fluorescence intensity, fluorescence lifetime, and a shift of fluorescence maximum to longer wavelengths. The decay characteristics of the fluorescence in polar protic solvents shows two exponential decays with the lifetimes of 0.6-0.8 and 1.6-1.9 ns in 5% ethanol/water, while MOPCH2OC3 shows 0.5 and 1.7 ns fluorescence lifetimes. The long-lived component of fluorescence can be attributed to the relaxed species (i.e., the species for which the solvent reorientation (or relaxation) has occurred), while the short-lived components can be associated with the unrelaxed, or only partially relaxed, species.

Infrared Spectra of Wood Powders from Pinus densiflora, Populus alba x glandulosa and Quercus mongolica (소나무, 현사시나무 및 신갈나무의 적외선(赤外線)스팩트럼)

  • Kong, Young-To
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.31-36
    • /
    • 1981
  • The infrared specta of wood powders have been recorded both in the untreated stste and after treatment through 1%-NaOH extraction(2hrs) and alcohol-benzene mixture extraction. Differences between the spectra of 3 species(Pinus densiflora, Populus alba x glandulosa and Quercus mongolica) can be explained chiefly in terms of theirs chemical compositions through comparisions of the spectra of pure cellulose powders. 1. The peak near $3400cm^{-1}$ from wood powders appeared at $3420cm^{-1}$, which was shifted to left compared with pure cellulose powders. 2. Many new peaks appeared at 2725, 1730, 1660, 1640, 1600, 1510, 1500, 1460, 1385, 1270, 830 and $810cm^{-1}$ etc., which were not appeared in pure cellulose powders. 3. Pinus densiflora spectra of untreated powders showed small peak appeared at $2840cm^{-1}$, which was the most characteristic band. There were peaks at $1240cm^{-1}$ in Populus alba x glandulosa and Quercus mongolica spectra of untreated wood powders. 4. Treated wood powder spectra showed weak or no peaks at near $1730cm^{-1}$ and also at near $2920cm^{-1}$. $2840cm^{-1}$, near $1385-1365cm^{-1}$, near $1235cm^{-1}$ and $1110-1095cm^{-1}$ etc. 5. The Alcohol-benzene extractive spectrum from Pinus densiflora showed many peaks at $3600-2300cm^{-1}$, $3100-2800cm^{-1}$, $1700cm^{-1}$, $1450cm^{-1}$ and $1375cm^{-1}$ etc. The most characteristic band of the extractives appeared at $3100-2900cm^{-1}$.

  • PDF