• Title/Summary/Keyword: New renewable energy system

Search Result 1,388, Processing Time 0.026 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

Development and Performance Test of SOFC Co-generation System for RPG (SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Choi, Ho-Yun;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF

The Study on the Controller for Supplying Stably Power with a Stand-Alone Photovoltaic/Wind/Small Generator Hybrid Power Generation System (독립형 태양광, 풍력, 소형발전기 복합시스템에서 안정적인 전력공급을 위한 컨트롤러에 관한 연구)

  • Choi, Byoung-Soo;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.48-56
    • /
    • 2012
  • The object of this paper is the controller for supplying stably power in a separate house in which a hybrid electrical storage system with a stand-alone photovoltaic/wind power generation system and a small generator is applied. In the photovoltaic/wind hybrid power system used in the separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. In particular, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to estimate the number of sunless days. Accordingly, it is preferable to build the electrical storage system that numbers of sunshineless days are to be controlled and a shortage amount of the power generation capacity is to be handled by a small generator system. In order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage. Such system needs components including inverters for photovoltaic and wind power generation system, batteries and controllers for automatically driving the small generator, based upon the nature of the stand-alone house, and it is preferable to use the controller having a simpler and higher stability by adopting the all-in-one scheme to facilitate its maintenance.

A Study on the Formation and the Change of the CDM(Clean Development Mechanism) Industry in the Republic of Korea from the Change in Industrial Networks (한국 청정개발체제 네트워크 변화에 따른 산업 형성과 변화 연구)

  • Lee, Jin-Hyung
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.486-502
    • /
    • 2017
  • This study investigated the formation process and networks of Korean Clean Development Mechanism(CDM) industry. It aimed to reveal the factors and the drivers for the formation processes of this industry in the specific place. Based on the analysis of the Project Design Documents(PDDs) of the CDM projects and the collected project data by international institutions, surveys, and interviews were done. On the basis of these data, the analysis on the industrial change as complex emergent effects by the network evolution caused by adaptive activity of firms is conducted. In the time of the genesis, a kind of serendipity that the industrial activities of Korean firms meet to new system, CDM, In the changing process of the Korean CDM industry, the role of policies fo Korean Government was important to promote the new and renewable energy projects of the power companies. In the time of restructuring, Korean government policies formed new initial conditions for the new domestic GHGs reduction industry. In this processes, the localization of knowledge acted as a key driver for the formation of the Korean CDM industry.

Fabrication Characteristics and Performance Evaluation of a Large Unit Cell for Solid Oxide Fuel Cell (고체산화물연료전지용 대면적 단위전지 제조특성 및 성능평가)

  • Shin, Y.C.;Kim, Y.M.;Oh, I.H.;Kim, H.S.;Lee, M.S.;Hyun, S.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.13-16
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) is an electrochemical energy conversion system with high efficiency and low-emission of pollution. In order to reduce the operating temperature of SOFC system under $800^{\circ}C$, the thickness reduction of YSZ electrolyte to be as thin as possible, e.g., less than 10 ${\mu}m$ are considered with the microstructure control and optimum design of unit cell. Methods for reducing the thickness of YSZ electrolyte have been investigated in coin cell. Moreover, a large unit cell($8cm{\times}8cm$) for SOFC was fabricated using an anode-supported electrolyte assembly with a thinner electrolyte layer, which was prepared by a tape casting method with a co-sintering technique. we studied the design factors such as active layer, electrolyte thickness, cathode composition, etc,. by the coin type of unit cell ahead of the fabrication process of a large unit cell and also reviewed about the evaluation technique of a large size unit cell such as interconnect design, sealing materials and current collector and so forth. Electrochemical evaluations of the unit cells, including measurements such as power density and impedance, were performed and analyzed. Maximum power density and polarization impedance of coin cell were 0.34W/$cm^2$ and $0.45{\Omega}cm^2$ at $800^{\circ}C$, respectively. However, Maxium power density of a large unit cell($5cm{\times}5cm$) decreased to 0.21W/$cm^2$ at $800^{\circ}C$ due to the increase of ohmic resistance. However, It was found that the potential value of a large unit cell loaded by 0.22A/$cm^2$ showed 0.76V at 100hrs without the degradation of unit cell.

  • PDF

A Study on the Optimal Resource Configuration Considering Load Characteristics of Electric Vehicles in Micro Grid Environment (전기자동차 부하 특성을 고려한 마이크로그리드의 최적 전원 구성에 관한 연구)

  • Hwang, Sung-Wook;Chae, Woo-Kyu;Lee, Hak-Ju;Yun, Sang-Yun;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.228-231
    • /
    • 2015
  • In power system research fields, one of current key issues is the construction and commercialization of micro grid site which is called green island, carbon zero island, energy independent island, building micro grid, etc. and various affiliated technologies have been being vigorously developed to realize. In addition, various researches about electric vehicles (EVs) are in progress and it is expected to penetrate rapidly with the next a few years. Some new load models should be developed integrating with electric vehicle loads because the EVs' deployment could cause the change of load composition rate on power system planning and operations. EVs are also resources for micro grid as well as distributed generation and demand response so that various supply and demand side resources should be considered for micro grid researches. In this paper, the load composition rate of residential sectors is prospected considering the deployment of EVs and the resource configuration of micro grid is optimized based on net present cost. In the optimization, the load patten of case studies includes EV's charging characteristics and various cases are simulated comparing micro grid environment and normal condition. HOMER is used to compare various cases and economic effects.

Multi-MW Class Wind Turbine Blade Design Part II : Structural Integrity Evaluation (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part II : 구조 건전성 평가)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • Rotor blades are important devices that affect the power performance, efficiency of energy conversion, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. When a design is complete, a design evaluation should be performed to verify the structural integrity of the proposed blade in accordance with international standards or guidelines. This paper presents a detailed exposition of the evaluation items and acceptance criteria required for the design certification of wind turbine blades. It also presents design evaluation results for a 2-MW blade (KR40.1b). Analyses of ultimate strength, buckling stability, and tip displacement were performed using FEM, and Miner's rule was applied to evaluate the fatigue life of the blade. The structural integrity of the KR40.1b blade was found to satisfy the design standards.

The Effect of Pump Intake Leaning Angle and Flow Rate on the Internal Flow of Pump Sump

  • Lee, Youngbum;Kim, Kyung-Yup;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.74-80
    • /
    • 2017
  • Pump sump system or pumping stations are built to draw water from a source such as river and used for irrigation, thermal power plants etc. If pump sump is improperly shaped or sized, air entraining vortices or submerged vortices may develop. This may greatly affect pump operation if vortices grow to an appreciable extent. Moreover, the noise and vibration of the pump can be increased by the remaining of vortices in the pump flow passage. Therefore, the vortices in the pump flow passage have to be reduced for a good performance of pump sump station. In this study, the effect of pump intake leaning angle and flow rate on the pump sump internal flow has been investigated. There are three cases with different leaning angle. Moreover, a pipe type with elbow also has been studied. The flow rate with three classes of air entraining vortices has been examined and investigated by decreasing the water level. The result shows that the air entraining vortices easily occurs at the pump intake with large leaning angle. Moreover, the elbow type of the pump intake easily occurs air entraining vortices at the high flow rate (or velocity) in comparison to other pump intake type.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

A Study on Investigation and Analysis of Photovoltaic Facilities for Building -Application in Jecheon Area- (건물적용 태양광 발전시설 실태 조사.분석에 관한 연구 - 제천지역을 중심으로 -)

  • Yun, Doo-Young;Kim, Jun-He;Yoo, Dong-Cheol;Lee, Eung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.354-359
    • /
    • 2012
  • With the long-term use of fossil fuel, the whole world is suffering from serious abnormal changes in weather caused by global warming. For this reason, many countries are reducing greenhouse gas emissions out of obligation and the allowable emissions are assigned to each country. Korea is also putting much effort into reducing greenhouse gas emissions by 30 percent against BAU(Business As Usual) by 2020, and is pushing ahead with several projects such as 'Million Green Home' and 'Hatsal Gaduk Home' to expand the use of new renewable energy in house as part of its policy. This study was designed to come up with improvements and help to expand photovoltaic facilities, by investigating and analyzing the current state of photovoltaic facilities in the country and problems in installing them through an in-site reconnaissance and a survey in Jecheon area. As the result, it was found that residents in the area were inadequate to operate and install photovoltaic facilities, lacked awareness of them and felt burdened economically by managing and installing them, although they had a high awareness of solar energy and photovoltaic facilities are constantly increasing with governmental support. In conclusion, it is considered that as improvements, operational effects should be increased through development of techniques, factors to reduce the effects in operating them due to insufficient management and installation should be removed and awareness of residents need to be improved through long-term plans, political support and education of the government.

  • PDF