• Title/Summary/Keyword: New energy system

Search Result 4,397, Processing Time 0.033 seconds

Spatiotemporal Applications for Managing New&Renewable Energy Resources (신재생에너지 자원 관리를 위한 시공간 응용 기술)

  • Lee, Yang-Koo;Ryu, Keun-Ho;Kim, Kwang-Deuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.327-331
    • /
    • 2008
  • In this paper, we argue that new&renewable energy resources are difficult to be managed with GIS technology due to their spatiotemporal features, and suggest that spatiotemporal database and sensor network can be applied to the new&renewable energy management system as advanced technology. To give the motivated issues, we introduce and analyze the concept of the spatiotemporal database and sensor network, and the case studies in each applications.

  • PDF

A Development of Resource Map System based on WebGIS for Utilization of New and Renewable Energy Resource (신재생에너지 자원의 활용을 위한 WebGIS 기반의 자원지도 시스템 개발)

  • Kim, Sang-Yeob;Yun, Chang-Yeol;Jo, Dok-Ki;Kim, Hyun-Goo;Kang, Young-Heack
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.1044-1045
    • /
    • 2013
  • 신재생에너지자원 사용의 확대와 더불어 그 안전성에도 관심이 고조되고 있다. 이에 따라 신재생에너지의 개발과 보급을 위한 데이터를 축적하고 관리, 활용할 수 있는 체계가 필요하다. 본 연구에서는 신재생에너지자원을 보다 효율적으로 활용하기 위한 WebGIS 기반의 시스템을 개발한다. 공간 데이터의 관리, 공간정보 서비스 인프라를 구축하기 위해서 기 구축된 시스템에 OGC의 표준을 적용하고, 평가를 위한 공간정보를 연계하여 신재생에너지자원의 개발 및 보급을 위한 경제성평가 모듈의 신뢰성을 향상시켰다. 이를 통해 신재생에너지 자원평가, 최적지 선정 및 잠재량 등에 대한 정밀한 분석 및 평가가 가능하며, Web기반의 시스템 개발을 통해 신재생에너지 정보의 활용성 증대, 신재생에너지에 대한 인식제고를 위한 도구로써 활용될 수 있다.

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources (계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술)

  • Jeong Min Park
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

The Effect of New and Renewable Energy Equipment KS Certification Requirements on the Performance of Firms (신재생에너지설비 KS인증 요구사항이 기업 성과에 미치는 영향)

  • Han, Yun-Cheol;Kim, Gunwoo;Kang, Kyu-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.85-99
    • /
    • 2017
  • New and Renewable Energy Equipment Certification program has been integrated into the KS(Korean Industrial Standards) certification system as of July 29, 2015. This study is to determine whether the KS certification requirement has had a positive effect on corporate performance (e.g. quality improvement, financial result, customer satisfaction) within those that had already acquired the New and Renewable Energy Equipment KS certification. As a result, among the requirements for the KS certification, quality management, product management, and product testing have a positive impact on product quality improvement, and product testing has shown a positive influence on customer satisfaction. Although requisite for the KS certification did not have a significant effect on financial outcome such as increase in revenue, it has shown to have positive consequence to some extent on those firms that newly obtained the certification.

A Study on Distribution of Small Hydropower Resources Using GIS (지리정보시스템을 이용한 소수력자원 분포 연구)

  • Park, Wansoon;Lee, Chulhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.203-203
    • /
    • 2010
  • Small hydropower is one of the many types of new and renewable energy, which South Korea is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower geographic information system. This study has given greater precision to calculating annual electricity generation and installed capacity of small hydropower plants of 117 medium basins by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower geographic information system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc.. Established system of GIS small hydropower energy can be used gather basic information for positive applications of small hydropower energy nationwide.

  • PDF

Development of a Method of Pre-Feasibility Study for the Application of Co-Generation System in New Apartment (신설아파트 열병합발전 도입에 대한 예비 타당성 분석기법 개발)

  • Kee, Woo-Bong;Kim, Kwang-Ho
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.185-193
    • /
    • 2007
  • The object of this study is the development of a Method which is enable to review the preliminary feasibility for co-generation system in new apartment buildings. In Korea co-generation systems have been installed in most of large industrial plants and commercial buildings which consume a large quantity of electric and heat energy, for energy saving and cutting products cost, under positive governmental supports. However for apartment buildings which consume quite a large electric and heat energy, are still remained in conventional energy supply system, and are not popular to utilize useful co-generation system. One of the major reason for these is the lack of clear and easy justification tool. In this circumstance, this study can provide a tool to verify the feasibility of co-generation in apartment buildings with this handy tools for planners and designers beforehand.

  • PDF

The Effect of Remodeling Replacement of Photovoltaic Power Generation System in Fish Farm : Analysis of Energy Saving Effect through Simulation (수조식 양식장의 태양광발전시스템 리모델링 교체 효과: 시뮬레이션을 통한 에너지절감효과 분석)

  • Choi, Hyunseok;Na, Jonghyuk;Lee, Hyunyoung;Noh, Jayeop
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2021
  • In the past, marine pollution caused by radioactivity and wastewater discharge caused mass destruction. As an alternative, the land farming system became common and operational. In recent years, safety and environmental problems caused by declining population due to aging of fishermen and underdeveloped facilities have always been lurking, so improvement is urgently needed. As part of the new renewable energy 3020 plan announced by the government in 2017, a new model was proposed to improve the environment as well as save energy when the roof of a water tank farm was remodeled into a solar power system. Study, when the existing roof was remodeled and replaced with a water tank farm in Busan as an empirical model, the energy saving rate was analyzed by comparing the actual electricity consumption and power generation.

Preliminary Feasibility Study on Wind and Solar Hybrid Power Systems based on Venturi Effects for Buildings (벤투리 효과를 활용한 도심형 건물용 하이브리드 풍력 및 태양광 발전 시스템 기초타당성 예비연구)

  • Suhyun Kim;Yoonsoo Kim;Sumin Park;Jihyeon An;Sanghun Lee
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Recently, the use of renewable energy has been increasing to achieve carbon neutrality. The concept of a zero-energy building is also attracting attention. In this study, a preliminary study was conducted to analyze the feasibility of a hybrid wind and solar power generation system between buildings that utilize the building wind generated by the Venturi effect. For this purpose, the wind speed and sunshine hours were monitored in the area where the building wind blows by the Venturi effect, and the power generation depending on system types, areas, and season was estimated. Consequently, the wind power generation system showed a larger amount of power per area than solar power. The wind power systems can generate larger power if wind power blades are installed along the height of the building. As a preliminary study, this study verified the feasibility of the system utilizing building wind and suggested follow-up studies.

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.