• Title/Summary/Keyword: New concept engine

Search Result 112, Processing Time 0.04 seconds

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics (2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향)

  • Kang, Jeong-Ho;Lee, Sung-Man;Chung, Jae-Woo;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

XML Based Wiki Engine Systerm (XML 기반 위키엔진 시스템)

  • Choe, Hyeon-Sik;An, Seong-Ok
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.151-160
    • /
    • 2004
  • The Web which supplied static information by web page administrator takes big change, recently, since the web service of new concept called 'WikiWiki' appeared. Wiki system can have gotten very active participation of users because everybody who inspect web page can exchange and add page freely. This paper shows that Wiki engine system implemented by XML and XSLT etc., and explains how to manage the history of document change.

  • PDF

Analysis of the Driving Performance in Piezo Injector for Clean Diesel Engine (친환경 디젤엔진용 차세대 피에조 인젝터의 구동성능 해석)

  • Lee, Jin-Wook;Kang, Kern-Yong;Min, Kyoung-Doug
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.33-34
    • /
    • 2006
  • In this study, a prototype piezo-driven Injector. as a new method driven by piezoelectric energy, has been designed and fabricated based on the concept of inverse piezo-electric effect to overcome the major drawbacks of conventional solenoid-driven injector with a fixed and slow control of injection rate. The effects of an electric control between the solenoid valve and piezo-ceramic stack for injector needle's driving on the dynamic characteristics were usually investigated. We found that this piezo-electric actuator has the main advantage to drastically reducing the time of injector nozzle opening, as well to exert higher force output levels.

  • PDF

Fan-shaped Spray Characteristics of High Pressure Slit Nozzle in a Gasoline Direct Injection Engine (가솔린 직접분사식 고압 슬릿 노즐의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Chong-Min;Kang, Shin-Jae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2239-2244
    • /
    • 2003
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

  • PDF

An Experimental Study on the Two Stage-Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • Kim, Hyung-Min;Ryu, Jea-Duk;Lee, Ki-Hyung;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.13-19
    • /
    • 2003
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthen. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct inject type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

  • PDF

LOW FUEL CONSUMPTION AND LOW EMISSIONS - ELECTROMECHANICAL VALVE TRAIN IN VEHICLE OPERATION

  • Pischinger, M.;Salber, W.;Staay, F.V.D.;Baumgarten, H.;Kemper, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle. "Late Exhaust Valve Open" (LEO) timing during the exhaust stroke leads to exhaust gas afterburning and, thereby, results in high exhaust gas temperatures and low HC emissions. Vehicle investigations have demonstrated an improved accuracy of the air-fuel-ratio during transient operation. Results in the New European Driving Cycle have confirmed a reduction in fuel consumption of more than 15% while meeting EURO IV emission limits.

  • PDF

Implementation of SGML Retrieval System through Interoperability with Database and Search Engine based on WWW (WWW에서 데이터베이스와 검색엔진의 연동을 통한 SGML 검색시스템의 구현)

  • 김낙현;정수용;노명호
    • Proceedings of the CALSEC Conference
    • /
    • 1999.07b
    • /
    • pp.575-586
    • /
    • 1999
  • The advent of the Internet and the enormous increase in volume of electronically stored information (SGML, Image, Sound, etc.) has led to substantial work on IR(Information Retrieval). To service on the WWW, construction and retrieval technology of SGML, which is the fundamental standard data format for CALS/EC, is needed specially. Due to such a change, it becomes essential to change the existing paradigm of conventional information retrieval systems and to adopt new Internet service system with search engine, SGML browser and advanced Internet technology on WWW. KIPRIS(Korea Industrial Property Rights Information Service), which is the specialized and integrated Internet service systems in the field of industrial property rights information service, is trying to be a guide for our country to establish its technological competitiveness with providing the online service of high quality. The objective of the paper identifies features and technologies of KIPRIS IR(Information Retrieval) system based on WWW as follows. First, it describes the development background and process of KIPRIS. Second, it presents a fundamental technology that consists of IR(Information Retrieval) concept, BRS(Bibliographical Retrieval System) search engine, SGML implementation technologies and the Internet/WWW technologies. Third, it provides information about system configuration, architecture, and the features and characteristics of KIPRIS. Finally, the implemented KIPRIS system is introduced.

  • PDF

Numerical analysis of flow characteristics with intake port and valve design (흡기포트 및 밸브 형상에 따른 정상 유동 특성)

  • Lee, Sang-Jin;Kim, Seong-Cheol;Kim, Duk-Sang;Ohm, In-Yong;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.921-927
    • /
    • 2001
  • Steady flow bench test is a practical, powerful and widely used test in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very hard to investigate all port and valve shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through two and three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. For this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. There results were compared with those of real steady flow tests. As a result, the 2-D analysis described the phenomena qualitatively well, and also the results of 3-D analysis were almost consistent with experimental data.

  • PDF

Flame Visualization and Flame Characteristics of Spark Plug with Pre-ignition Chamber (예연소실 점화플러그의 화염가시화와 화염전파특성)

  • Jie, Myoung Seok;Johng, In Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • New concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber at the lower end of spark plug and flame hole, in which fresh mixture gas can be put in through the flame hole without any fuel supply system. This spark plug was tested in a single cylinder engine dynamometer for different air fuel ratio to measure the fuel consumption rate, emission gases, and MBT timing. And constant volume combustion chamber was made to understand flame characteristics of spark plug. New spark plug induced fast burn compared to the conventional spark plug and its effects were increased in lean air fuel ratio. Pre-ignition chamber spark plug with 5 holes which had adjusted size was more stable and effective in combustion performance than pre-ignition chamber spark plug with 1 hole. And its effects showed larger differences in lean air fuel ratio than stoichiometric condition. Flame kernel and flame growth process of conventional spark plug and pre-ignition chamber spark plug studied by flame visualization of schlieren method.