• 제목/요약/키워드: New and known compounds

검색결과 346건 처리시간 0.026초

엄나무 유래 신규 항산화 활성물질 (Antioxidants Isolated from Kalopanax pictus)

  • 김영희
    • 한국자원식물학회지
    • /
    • 제11권
    • /
    • pp.89-109
    • /
    • 1998
  • Screening of new antioxidants form oriental medicines resulted in the isolation of a new antioxidative compound and eight known compounds from the stem bark of Kalopanax pictus. On the basis of various spectrosopic studies, the structure of the new compound was determined to be 4-rhamnose-3,5-dimethoxybenzoic acid methly ester. Other known compounds were identified as ferulic acid, 4,5,6,-trihydroxyflavanone, 2', 4',4' -trihydroxychalcone, caffeic acid, coniferyl alcohol, syringin, 1,3-di-O-caffeoylquinic acid. These compounds showed lipid peroxidation inhibitory acitivity in rat liver microsomes and free radical scavenging acitivity.

  • PDF

Phenolic glycosides from Pyrola japonica-(II)

  • Kim, Ju-Sun;Kang, Sam-Sik;Son, Kun-Ho;Chang, Hyeun-Wook;Kim, Hyun-Pyo;Bae, Ki-Hwan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.202.3-202.3
    • /
    • 2003
  • Two Known compounds, syringaresinol monoglucoside(8), chimaphilin(14), together with three new compounds, (9)[mp. $106{\sim} 111^{\circ}C$, C_{29}H_{44}O_{13}$], (10)[mp. $180{\sim}182^{\circ}C$, $C_{15}H_{20}O_{9}$] and (11)[mp. $100{\sim}105^{\circ}C$, $C_{18}H_{28}O_{8}$] were isolated from the BuOH fractionof Pyrola japonics(Pyrolaceae). The structures of the known compounds were determined by chemical and spectorscopic methods. The assignments of the $^{1}H-$ and $^{13}C-NMP$ spectra of these compounds were carried out by two-dimensional $^1H-^1H-COSY$, NOESY and $^1H-^{13}C$ multiple-bond, multiplequantum spectroscopic correlation techniques. The characterization of the three new compounds is now in progress.

  • PDF

Biological Control Potential of Penicillium brasilianum against Fire Blight Disease

  • Kim, Yeong Seok;Ngo, Men Thi;Kim, Bomin;Han, Jae Woo;Song, Jaekyeong;Park, Myung Soo;Choi, Gyung Ja;Kim, Hun
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.461-471
    • /
    • 2022
  • Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the 𝛽-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 ㎍/ml. When culture filtrate and penicillic acid (125 ㎍/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.

Flavonoids from Iris spuria (Zeal) Cultivated in Egypt

  • Singab, Abdel Nasser B.
    • Archives of Pharmacal Research
    • /
    • 제27권10호
    • /
    • pp.1023-1028
    • /
    • 2004
  • A new 12a-dehydrorotenoid 1, 11-dihydroxy-9, 10-methylenedioxy-12a-dehydrorotenoid (1), together with a new isoflavonoid glycoside tectorigenin-7-O-${\beta}$-glucosyl-4'-O-${\beta}$-glucoside (3), were isolated and identified from the rhizomes of I. spuria (Zeal). In addition, 4 known compounds, tectorigenin (2) tectorigenin-7-O-${\beta}$-glucosyl $(1{\leftrightarrow}6)$ glucoside (4), tectoridin (a tectorigenin- 7-O-${\beta}$-glucoside) (5) and tectorigenin-4'-O-${\beta}$-glucoside (6) were isolated and identified for the first time from this plant. The structures of the isolated compounds were determined by spectroscopic methods (UV, IR, $^1H,\;^{13}C$NMR, DEPT, HMQC, NOESY, and HMBC experiments and MS spectrometry) and by comparison with literature data of known compounds. Compounds 2, 4, 5, and 6 are reported for the first time from this plant through the present study.

A New Chemical Constituent from the Hairy Root Cultures of Catharanthus roseus

  • Chung, Ill-Min;Park, Han-Young;Ali, Mohd;San, Ka Yiu;Peebles, Christie A. M.;Hong, Seung-Beom;Ahmad, Ateeque
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.229-234
    • /
    • 2007
  • One new compound, 3,7,11,19,23,27-hexamethyl-15-hydroxymethylene-n-octacos-5,8,20-triene-10β,18α- diol-10β-D-glucopyranoside (1), along with the three known compounds, 3-epibetulinic acid (2), n-pentadecanyl octa-dec-19-en-oate (3) and β-sitosterol (4) were isolated from the methanolic extract of the cultured Catharanthus roseus hairy roots. The structures of the one new and three known compounds were elucidated using one- and two-dimensional NMR in combination with IR, EI/MS, FAB/MS. To the best of our knowledge, 3,7,11,19,23,27-hexamethyl-15-hydroxymethylene-n-octacos-5,8,20-triene-10β,18α-diol-10β-D-glucopyranoside, 3-epibetulinic acid and n-pentadecanyl octa-dec-19-en-oate were identified for the first time from the hairy roots of C. roseus.

Studies on Chemical Constituents of Three Marine Sponges, Siphonochalina siphonella in Egypt and Arenosclera sp. and Gelliodes sp. in Vietnam

  • 기대원
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.16-44
    • /
    • 2020
  • Cancer is the second leading cause of death in the world. According to the 2018 reports, one in six people worldwide is reported to die as a result of cancer. The discovery of anticancer drugs has been utilized extensively, but there has been no report on excellent selective activity in cancer cells. The discovery of bioactive substances from marine sponges has been the limelight in the pharmaceutical field over the past decade owing to the production of many bioactive compounds from the sponges to protect themselves against the environment. On top of that, marine sponges also produced cytotoxic compounds such as terpenoids, alkaloids, steroids, and peptides which suggests that marine sponges have high potential in the development of anticancer drugs. Thus, this study aimed to obtain new cytotoxic compounds from S. siphonella in Egypt and Arenoscelra sp. and Gelliodes sp. in Vietnam, and further investigation of the extract from these marine sponges led to isolation of ten new compounds and 21 known compounds. Chapter 1 will discuss about the isolation and structure elucidation of eight new polyacetylene derivatives from S. siphonella and their cytotoxic activities. The isolation and structural elucidation of one new polybrominated iododiphenyl ether from Arenosoclea sp. as well as cytotoxic activities of the isolated compounds will be reported in chapter 2. Finally, isolation and structure elucidation of new compounds from the marine sponge Gelliodes sp. and their cytotoxic activities will be discussed in chapter 3.

  • PDF

감자 유래 극성화합물의 생리활성 분석 (Biological Activity Analysis of Potato-derived Polar Compounds)

  • 김대윤;남정환;이재권
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.62-62
    • /
    • 2019
  • Natural substances have various physiological activities. Substances isolated from natural substances are known to be safer and more potent than pharmaceuticals. Potatoes not only act as energy sources but also contain active ingredients such as vitamins and minerals. In particular, the potato contains a large amount of polar compounds, including the saponin in the polar compounds, and the physiological activity of the saponins, such as immunity enhancement, antioxidant and anti-inflammatory is known. In this study, the antioxidative activity of polar compounds from five potatoes was examined by chemical base anti-oxidation assay and cell based anti-oxidation assay. In the chemical base anti-oxidation assay, DPPH experiment showed activity in the order of Hongyoung, Haryung, Seohong, Sumi, and Jayoung. In the LPA experiment, IC50 was lower in the order of Jayoung, Seohong, Sumi, Hongyoung, and Haryung. In the cell based anti-oxidation assay, the smallest amount of ROS was generated when the compound was derived from Haryung and hongyoung, and strong SOD activity was observed in Sumi and Jayoung. The results of this study reveal the antioxidative effect of polar compounds extracted from various kind of potatoes, which will enable the acquisition of new bioactive candidates and the establishment of new profit generation models for farmers.

  • PDF

Aromatic Compounds and Tritepenoidal Saponins from Clematis koreana var. umbrosa

  • Whang, Wan-Kyunn
    • Archives of Pharmacal Research
    • /
    • 제17권1호
    • /
    • pp.5-10
    • /
    • 1994
  • From the methanolic extract of aerial parts of Clematis koreana var. umbrosa, one new triterpenoidal saponin, 3-O-${\beta}$-D-xylopyranosyl(1-3)-${\alpha}$-L-arabinopyranosyl oleanolic acid 28-O-${\alpha}$-L-rhamnopyranosyl(1-4)-${\beta}$-glucopyranosyl(1-6)-${\beta}$-glucopyranosyl ESTER, along with five known aromatic compounds and two known triterpenoidal saponins were isolated.

  • PDF

Cytotoxic Constituents of the Leaves of Ixeris sonchifolia

  • Suh, Ji-Young;Jo, Young-Mi;Kim, Nam-Deuk;Bae, Song-Ja;Jung, Jee-H.;Im, Kwang-Sik
    • Archives of Pharmacal Research
    • /
    • 제25권3호
    • /
    • pp.289-292
    • /
    • 2002
  • The ethyl acetate extract of the leaves of Ixeris sonchifolia afforded two new and two known sesquiterpene lactone glucosides of the guaiane-type, together with a known alkenol glucoside. The known compounds were identified as ixerin Z (1), ixerin Z-6'-p-hydroxyphenylace-tate (2), and (Z)-3-hexen-1-ol-$\beta$-D-glucopyranoside (3), respectively. The structures of the new compounds were elucidated as 11, 13a-dihydroixerin Z [4, 3-hydroxy-2-oxo-guaia-1 (10), $3-dien-5{\alpha},6{\beta},7{\alpha},11{\beta}H-12,6-olide-3-O-{\beta}-D-glucopyranoside],{\;}and{\;}3,10{\$beta}-dihydroxy-2-oxo-guaia-3,11(13)-dien-1{\alpha},5{\alpha},6{\alpha},7aH-12,6-olide-10-O-{\beta}-D-glucopyranoside$ (5), respectively. The cytotoxicity of these compounds against human hepatocellular carcinoma cell (HepG2) and human melanoma cell (SK-MEL-2) was evaluated.

Xanthone and Flavonoid Derivatives from the Leaves of Maclura tricuspidata with Antioxidant and Anti-tyrosinase Activity

  • Jo, Yang Hee;Lee, Solip;Ryu, Se Hwan;Yeon, Sang Won;Turk, Ayman;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • 제27권4호
    • /
    • pp.234-239
    • /
    • 2021
  • Masclura tricuspidata, also called as Cudrania tricuspidata, is one of the most common Moraceae family plants in East Asia. Its trivial name follows mulberry due to the similar morphology. Investigation of the bioactive constituents of M. tricuspidata leaves yielded a new xanthone derivative along with twenty known compounds through various chromatographic techniques. A new compound was defined as mascluraxanthone (3), a prenylated xanthone glucoside on the basis of 1D and 2D NMR and MS data. Twenty known compounds were identified as four xanthone derivatives (1-2 and 4-5), two flavans (6-7), six flavanol derivatives (8-13), a flavonone (14) and seven flavonol derivatives (15-21). Among the isolated compounds, flavanol and flavonoid derivatives with 3',4'-OH groups showed antioxidant and anti-tyrosinase activities. Conclusively, the leaves of M. tricuspidata are rich in aromatic compounds including xanthones and flavonoids. In addition, these constituents showed antioxidant and anti-tyrosinase potentials, which might be useful for oxidative stress related diseases.