• Title/Summary/Keyword: New alternative fuel

Search Result 239, Processing Time 0.027 seconds

Development of the Interconnection Evaluation System for Dispersed Generations in Distribution Systems (분산전원의 배전계통 연계 평가 시스템의 개발에 관한 연구)

  • Kang Min-Kwan;Park Jae-Ho;Oh Yong-Taek;Hong Sang-Eun;Rho Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.12-20
    • /
    • 2006
  • Recently, new dispersed sources (DSG) such as Photovoltaic, Wind Power, fuel cell etc. are interconnected with distribution systems as national projects for alternative energy preparing for oil crisis. This paper deals with the optimal evaluation algorithms in the case where new dispersed sources are operated in distribution systems. It is very difficult and complicated to handle the interconnection issues for proper voltage managements, because professional skills and enormous amounts of data for the evaluations are required. The typical evaluation algorithms mainly depending on individual ability and quality of data acquired, inevitably cause the different results f3r the same issue, so unfair and subjective evaluations are unavoidable. In order to overcome these problems, this paper proposes reasonable and general algorithms based on the standard model system and proper criterion, which offers the fair and objective evaluations in any case.

  • PDF

Practices of Sustainable Agriculture in Korea With References for the Development of Sustainable Rice Production Systems (한반도에서 지속농업의 실천방안 지속적 벼 생산체계 개발을 중심으로)

  • Choe Zhin Ryong;Kim Jeong Bu;Cho Yong Son
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.10a
    • /
    • pp.288-312
    • /
    • 1998
  • In Korea, chemical fertilizers and agricultural chemicals have had a significant impact on food production and these are today thought to be an indispensable part of modern agriculture. On the other hand, socioeconomical and IMF and WTO status in Korea are constant reminders of the vulnerability of our fossil fuel dependent agriculture. A new crop production system to improve economic, environmental and production efficiency must be exploited. Our particular concern has been given to an integrated cropping system involving recycling of crop residues, soil and N management, biological N fixation and multipurpose legumes. As a new integrated crop production system, a no-till direct-sown rice-vetch relaying cropping system has been proposed in this paper. The formulation of this system is based on the conception that N fertilizers being neither limitlessly available nor affordable, the current high-input crop production systems have produced troubled results severe labour shortage ill rural areas, balance of payment, environmental degradation and reduction of human health far exceed economic concerns. A natural and logical consequence is that long-term sustainability of agricultural systems must rely on the use and effective management of internal resources. Based on the information obtained throughout a series of experiments last years we have proved that the no-till direct-sown rice-vetch relaying cropping system dictates biological alternative which can augment, and in some cases replace, N fertilizers. Comprehensive discussions were made for the proposed system and it concluded that the system can offer an economically attractive and ecologically sound means of reducing external nitrogen input and improving the quality and quantity of internal resources, and consequently improving the farmers as well as the national returns.

  • PDF

Evaluation on the Environmental and Social Value Awareness of the Heat Supply for the Horticultural Greenhouse using Thermal Effluents from Power Plant (화력발전소 온배수열 활용 시설하우스 열공급에 대한 환경 및 사회적 가치 인식 비교 분석)

  • Kim, Ga-Hee;Ahn, Cha-Soo;Um, Byung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.125-134
    • /
    • 2018
  • Recently, interest in alternative energy has been increasing to reduce greenhouse gas emissions and fossil fuel consumption in accordance with the United Nations Framework Convention on Climate Change(UNFCCC). Accordingly, there is a need to use waste heat that unused throughout industrial systems for lowering the concentration of energy on fossil fuels. In particular, government support projects for the energy recycling of agriculture and fisheries such as cultivation of tropical crops and aquaculture are being actively carried out by utilizing waste heat and thermal effluents caused from large-scale industrial complexes including power plants. The study was conducted on supplier (power plant), consumer (farmer) and stakeholders (constructor and local governments) of domestic demonstration areas using waste heat that is abandoned from the power plant in the form of thermal effluents. It investigated the overall improvement and feasibility of government funded projects through field interviews and questionnaire-type surveys. The results of this study are expected to provide basic directions for the operation of the project in terms of nationwide expansion and diffusion of the heat source supply project at horticultural greenhouse by utilizing the thermal effluents from power plant.

Fabrication and Properties of Ti-HA Composites Produced by Pulsed Current Activated Sintering for Biomaterials (통전가압활성소결에 의한 생체재료용 Ti-HA복합재료 제조 및 특성)

  • Woo, Kee Do;Kang, Duck Soo;Kwon, Eui Pyo;Moon, Min Seok;Shon, In Jin;Liu, Zhiguang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.508-515
    • /
    • 2009
  • Ti-6Al-4V biomaterial is widely used as a bone alternative. However, Ti-6Al-4V ELI alloy suffers from numerous problems such as a high elastic modulus and high toxicity. Therefore, non-toxic biomaterials with low elastic moduli need to be developed. Ti-HA(hydroxyapatite) composites were fabricated in the present work by pulsed current activated sintering (PCAS) at $1000^{\circ}C$ under 60 MPa using mixed Ti and HA powders. The effects of HA content on the physical and mechanical properties of the sintered Ti-HA composites have been investigated. X-ray diffraction(XRD) analysis of the Ti-HA composites, including Ti-40 wt%HA in particular, revealed new phases, $Ti_{2}O$, CaO, $CaTiO_3$, and TixPy, formed by chemical reactions between Ti and HA during sintering. The hardness of the Ti-HA composites decreased with an increase in HA content. The corrosion resistance of these composites was observed to be an excellent candidate as a commercial Ti-6Al-4 V ELI alloy. A Ti-5 wt%HA composite fabricated by PCAS is recommended as a new biomaterial, because it offers good corrosion resistance, compressive strength, wear resistance, and biocompatibility, and a low Young's modulus.

Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel (한국의 산림바이오매스에너지 중장기 수요-공급전망과 화석연료 대체효과 분석)

  • Lee, Seung-Rok;Han, Hee;Chang, Yoon-Seong;Jeong, Hanseob;Lee, Soo Min;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • This study analyzed the anticipated supply-and-demand of forest biomass energy (through wood pellets) until 2050, in South Korea. Comparing the utilization rates of forest resources of five countries (United Kingdom, Germany, Finland, Japan, and S. Korea), it was found that S. Korea does not nearly utilize its forest resources for energy purposes. The total demand for wood pellets in S. Korea (based on a power generation efficiency of 38%) was predicted to be 3,629 and 4,371 thousand tons in 2034 and 2050, respectively. The anticipated total wood pellet power generation ratio to target power consumption is 1.13% (5,745 GWh), 1.17% (6,336 GWh), and 1.25% (7,631 GWh) in 2020, 2030, and 2050, respectively. Low value-added forest residues left unattended in forests are called "Unused Forest Biomass" in S. Korea. From the analysis, the total annual potential amount of raw material, sustainably collectible amount, and available amount of wood pellet in 2050 were estimated to be 6,877, 4,814, and 3,370 thousand tons, respectively. The rate of contribution to Nationally Determined Contributions was up to 0.64%. Through this study, the authors found that forest biomass energy will contribute to a carbon neutral society in the near future at the national level.

A Study on the Cold Startability and Emission Characteristics of LPG Vehicle According to Test Temperature (시험온도에 따른 LPG 차량의 저온 시동성 및 배출가스 배출특성 연구)

  • Lee, Min-Ho;Kim, Sung-Woo;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.7-13
    • /
    • 2014
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas ($CO_2$, $CH_4$, $N_2O$) regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions (PM) particle of automotive had many problem that cause of ambient pollution, health effects. This paper discussed the influence of LPG fuel on automotive cold startability and exhaust emissions gas. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of cold startability, exhaust emission and greenhouse gas emission was analyzed.

Floating Photovoltaic Plant Location Analysis using GIS (GIS를 활용한 수상 태양광 발전소 입지 분석)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Global consumption of fossil fuels continues to increase. As developing countries use fossil fuel as much as the existing fossil fuel using countries, the total amount of fossil fuel consumed has risen. The finite fossil energy depletion insecurity have become serious. In addition, fossil energy is caused by environmental pollution, economic and social problems remain in assignments that need to be addressed. Although solar power is clean and has many benefits, there are several problems in the process of installing a solar power plant. To solve these problems, floating photovoltaic plants has emerged as an alternative. This floating photovoltaic plants location analysis has not been made yet. In this study, the conditions of the floating photovoltaic plants location is analyzed with the Analytic Hierarchy Process using the terrain and climate factors. The score is assigned to the attribute information of each factor by the classification table. After multiplied by the weight the result is analyzed by visualization of the score. As the result, the score of the northen part of Gyeongsangbuk-do province is higher than the southern part of Gyeongsangbuk-do province. Especially Andongho lake in Andong City and the reservoir in Yeongyang-Gun are extracted as the optimal location. The score of the river boundary is low not the center of the river stream. It is expected that this study would be a more accurate floating solar power plant location analysis.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

STRATEGIES TO REDUCE ENVIRONMENTAL POLLUTION FROM ANIMAL MANURE: PRINCIPLES AND NUTRITIONAL MANAGEMENT - A REVIEW -

  • Paik, I.K.;Blair, Robert;Jacob, Jacqueline
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.615-635
    • /
    • 1996
  • The animal industry must be environmentally sound to ensure its long-term sustainable growth. Livestock wastes mostly manure, can be a valuable resource as well as a potential hazard to environment. The first option of manure management is developing an 'environmentally sound' feeding program and feeds so there are less excreted nutrients that need to be managed. Once the manure is produced it can be best utilized as a fertilizer of a soil conditioner. In many countries the amount of manure that can be spread on land depends on the nutrient requirements of the crop being grown. The laws specify maximum application rates and not animal stocking rates. Farmer who reduce the N and P component of manure can release pressure on the environment without having to reduce the number of animals. There are alternative system for housing and manure treatment which generate manure that are easier to handle and have less pollutants or more economic value. Treated animal waste may also be used as a feedstuff or fuel source. Most of the options of waste management result in increased costs to implement. It is necessary to assess the economics in order to find an acceptable compromise between the increased costs and the benefit to the environment. Animal welfare is also becoming more and more of an issue and it will lead to systems where animals are kept in less confined environment. The new system will have a great impact in the waste management system in the future.

Development of Innovation DME Process from Natural Gas and Biomass in KOREA (천연가스와 바이오매스로부터 개선된 DME 공정의 개발)

  • Cho, Wonjun;Song, Taekyong;Baek, Youngsoon;Kim, Seung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.107-107
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas have played an important role of synthesizing the valuable chemical compound, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuels and chemical production. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C/min$ in thermogravimetric analysis. Bubbling fluidized bed reactor were use to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, CO2, H2 and a small fraction of C1-C4 hydrocarbons.

  • PDF