• Title/Summary/Keyword: New Customer Recommendation

Search Result 70, Processing Time 0.021 seconds

A New Item Recommendation Procedure Using Preference Boundary

  • Kim, Hyea-Kyeong;Jang, Moon-Kyoung;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.81-99
    • /
    • 2010
  • Lately, in consumers' markets the number of new items is rapidly increasing at an overwhelming rate while consumers have limited access to information about those new products in making a sensible, well-informed purchase. Therefore, item providers and customers need a system which recommends right items to right customers. Also, whenever new items are released, for instance, the recommender system specializing in new items can help item providers locate and identify potential customers. Currently, new items are being added to an existing system without being specially noted to consumers, making it difficult for consumers to identify and evaluate new products introduced in the markets. Most of previous approaches for recommender systems have to rely on the usage history of customers. For new items, this content-based (CB) approach is simply not available for the system to recommend those new items to potential consumers. Although collaborative filtering (CF) approach is not directly applicable to solve the new item problem, it would be a good idea to use the basic principle of CF which identifies similar customers, i,e. neighbors, and recommend items to those customers who have liked the similar items in the past. This research aims to suggest a hybrid recommendation procedure based on the preference boundary of target customer. We suggest the hybrid recommendation procedure using the preference boundary in the feature space for recommending new items only. The basic principle is that if a new item belongs within the preference boundary of a target customer, then it is evaluated to be preferred by the customer. Customers' preferences and characteristics of items including new items are represented in a feature space, and the scope or boundary of the target customer's preference is extended to those of neighbors'. The new item recommendation procedure consists of three steps. The first step is analyzing the profile of items, which are represented as k-dimensional feature values. The second step is to determine the representative point of the target customer's preference boundary, the centroid, based on a personal information set. To determine the centroid of preference boundary of a target customer, three algorithms are developed in this research: one is using the centroid of a target customer only (TC), the other is using centroid of a (dummy) big target customer that is composed of a target customer and his/her neighbors (BC), and another is using centroids of a target customer and his/her neighbors (NC). The third step is to determine the range of the preference boundary, the radius. The suggested algorithm Is using the average distance (AD) between the centroid and all purchased items. We test whether the CF-based approach to determine the centroid of the preference boundary improves the recommendation quality or not. For this purpose, we develop two hybrid algorithms, BC and NC, which use neighbors when deciding centroid of the preference boundary. To test the validity of hybrid algorithms, BC and NC, we developed CB-algorithm, TC, which uses target customers only. We measured effectiveness scores of suggested algorithms and compared them through a series of experiments with a set of real mobile image transaction data. We spilt the period between 1st June 2004 and 31st July and the period between 1st August and 31st August 2004 as a training set and a test set, respectively. The training set Is used to make the preference boundary, and the test set is used to evaluate the performance of the suggested hybrid recommendation procedure. The main aim of this research Is to compare the hybrid recommendation algorithm with the CB algorithm. To evaluate the performance of each algorithm, we compare the purchased new item list in test period with the recommended item list which is recommended by suggested algorithms. So we employ the evaluation metric to hit the ratio for evaluating our algorithms. The hit ratio is defined as the ratio of the hit set size to the recommended set size. The hit set size means the number of success of recommendations in our experiment, and the test set size means the number of purchased items during the test period. Experimental test result shows the hit ratio of BC and NC is bigger than that of TC. This means using neighbors Is more effective to recommend new items. That is hybrid algorithm using CF is more effective when recommending to consumers new items than the algorithm using only CB. The reason of the smaller hit ratio of BC than that of NC is that BC is defined as a dummy or virtual customer who purchased all items of target customers' and neighbors'. That is centroid of BC often shifts from that of TC, so it tends to reflect skewed characters of target customer. So the recommendation algorithm using NC shows the best hit ratio, because NC has sufficient information about target customers and their neighbors without damaging the information about the target customers.

Effects of Recommendation Selling in Family Restaurants on Customer Attitudes, Customer Satisfaction, Customer Purchase Decision Making (패밀리 레스토랑의 메뉴 권유 판매가 고객 태도, 만족, 구매 의사 결정에 미치는 영향)

  • Lee, Yeon-Jung;Ju, Hyun-Sik
    • Culinary science and hospitality research
    • /
    • v.12 no.2 s.29
    • /
    • pp.73-87
    • /
    • 2006
  • The purpose of this study is to investigate if recommendation selling (methods of recommendation selling, a key word used for recommendation, and employee attitude) influences the customers' menu decision. The results of the study are as follows: 'Menu picture' and 'explanation by word' among the tools used by employees for recommendation were found to influence customers' menu decision. The words such as 'new menu' and 'special only today' used by employees for recommendation were found to influence customers' menu decision. Employees' attitude elements such as 'interesting explanation', 'dressed up tidy', 'strong intention', and 'patience' were found to influence customer's menu decision. 'Recommendation selling' in the food and beverage industry means 'employees help customers make a good decision on food and beverage service'. This study makes an important contribution to the food industry in terms of providing substantial marketing strategies.

  • PDF

A Recommendation System Based on Customer Preference Analysis and Filter Management (고객 성향 분석과 필터 관리 기반 추천 시스템)

  • 이성구
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.592-600
    • /
    • 2004
  • A recommendation system, which is an application area of e-CRM in e-commerce environment, provides individualized goods recommendation service that meets the demand of individual users. In general, existing recommendation systems require extensive historic user information in application domains. However, the method of recommendation based on static historic user information needs to respond flexibly to users'demand that changes rapidly and sensitively over time and in domains including a variety of users. In addition, it is difficult to recommend for new users who are not fall into any of existing domains. To overcome such limitations and provide flexible recommendation service, this study designed and implemented CPAR (Customer Preference Analysis Recommender) system that supports customer preference analysis and filter management. The filtering management capacity of the present system eases the necessity of extensive information about new users. In addition, CPAR system was implemented in XML-based wireless Internet environment for recommendation service independent from platforms and not limited by time and place.

  • PDF

Weight Based Technique For Improvement Of New User Recommendation Performance (신규 사용자 추천 성능 향상을 위한 가중치 기반 기법)

  • Cho, Sun-Hoon;Lee, Moo-Hun;Kim, Jeong-Seok;Kim, Bong-Hoi;Choi, Eui-In
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.273-280
    • /
    • 2009
  • Today, many services and products that used to be only provided on offline have been being provided on the web according to the improvement of computing environment and the activation of web usage. These web-based services and products tend to be provided to customer by customer's preferences. This paradigm that considers customer's opinions and features in selecting is called personalization. The related research field is a recommendation. And this recommendation is performed by recommender system. Generally the recommendation is made from the preferences and tastes of customers. And recommender system provides this recommendation to user. However, the recommendation techniques have a couple of problems; they do not provide suitable recommendation to new users and also are limited to computing space that they generate recommendations which is dependent on ratings of products by users. Those problems has gathered some continuous interest from the recommendation field. In the case of new users, so similar users can't be classified because in the case of new users there is no rating created by new users. The problem of the limitation of the recommendation space is not easy to access because it is related to moneywise that the cost will be increasing rapidly when there is an addition to the dimension of recommendation. Therefore, I propose the solution of the recommendation problem of new user and the usage of item quality as weight to improve the accuracy of recommendation in this paper.

Number of Ratings and Performance in Collaborative Filtering-based Product Recommendation (협업 필터링 기반 상품 추천에서의 평가 횟수와 성능)

  • Lee Hong-Joo;Park Sung-Joo;Kim Jong-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.27-39
    • /
    • 2006
  • The Collaborative Filtering (CF) is one of the popular techniques for personalization in e-commerce storefronts. For CF-based recommendation, every customer needs to provide subjective evaluation ratings for some products based on his/her preference. Also, if an e-commerce site recommends a new product, some customers should rate it. However, there is no in-depth investigation on the impacts on recommendation performance of two number of ratings, i.e. the number of ratings of an individual customer and the number of ratings of an item, even though these are important factors to determine performance of CF methods. In this study, using publicly available EachMovie data set, we empirically investigate the relationships between the two number of ratings and the performance of CF. For the purpose, three analyses were executed. The first and second analyses were performed to investigate the relationship between the number of ratings of a particular customer and the recommendation performance of CF. In the third analysis, we investigate the relationship between the number of ratings on a particular item and the recommendation performance of CF. From these experiments, we can find that there are thresholds in terms of the number of ratings below which the recommendation performances increase monotonically. That is, the number of ratings of a customer and the number of ratings on an item are critical to the recommendation performance of CF when the number of ratings is less than the thresholds, but the value of the ratings decreases after the numbers of ratings pass the thresholds. The results of the experiments provide insight to making operational decisions concerning collaborative filtering in practice.

An Collaborative Filtering Method based on Associative Cluster Optimization for Recommendation System (추천시스템을 위한 연관군집 최적화 기반 협력적 필터링 방법)

  • Lee, Hyun Jin;Jee, Tae Chang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.19-29
    • /
    • 2010
  • A marketing model is changed from a customer acquisition to customer retention and it is being moved to a way that enhances the quality of customer interaction to add value to our customers. Such personalization is emerging from this background. The Web site is accelerate the adoption of a personalization, and in contrast to the rapid growth of data, quantitative analytical experience is required. For the automated analysis of large amounts of data and the results must be passed in real time of personalization has been interested in technical problems. A recommendation algorithm is an algorithm for the implementation of personalization, which predict whether the customer preferences and purchasing using the database with new customers interested or likely to purchase. As recommended number of users increases, the algorithm increases recommendation time is the problem. In this paper, to solve this problem, a recommendation system based on clustering and dimensionality reduction is proposed. First, clusters customers with such an orientation, then shrink the dimensions of the relationship between customers to low dimensional space. Because finding neighbors for recommendations is performed at low dimensional space, the computation time is greatly reduced.

A study on the customer behavior based customer profile model for personalized products recommendation (개인화된 제품 추천을 위한 고객 행동 기반 고객 프로파일 모델 연구)

  • Park, Yu-Jin;Jang, Geun-Nyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.324-331
    • /
    • 2005
  • In this paper, we propose a new customer profile model based on customer behavior in Internet shopping mall. The proposed technique defines customer profile model based on customer behavior information such as click data, buy data, and interest categories. We also implement CBCPM(Customer Behavior-based Customer Profile Model) and perform extensive experiments. The experimental results show that CBCPM has higher precision, recall, and F1 than the existing customer profile model.

  • PDF

Multi-Purpose Hybrid Recommendation System on Artificial Intelligence to Improve Telemarketing Performance

  • Hyung Su Kim;Sangwon Lee
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.752-770
    • /
    • 2019
  • The purpose of this study is to incorporate telemarketing processes to improve telemarketing performance. For this application, we have attempted to mix the model of machine learning to extract potential customers with personalisation techniques to derive recommended products from actual contact. Most of traditional recommendation systems were mainly in ways such as collaborative filtering, which predicts items with a high likelihood of future purchase, based on existing purchase transactions or preferences for products. But, under these systems, new users or items added to the system do not have sufficient information, and generally cause problems such as a cold start that can not obtain satisfactory recommendation items. Also, indiscriminate telemarketing attempts can backfire as they increase the dissatisfaction and fatigue of customers who do not want to be contacted. To this purpose, this study presented a multi-purpose hybrid recommendation algorithm to achieve two goals: to select customers with high possibility of contact, and to recommend products to selected customers. In addition, we used subscription data from telemarketing agency that handles insurance products to derive realistic applicability of the proposed recommendation system. Our proposed recommendation system would certainly solve the cold start and scarcity problem of existing recommendation algorithm by using contents information such as customer master information and telemarketing history. Also. the model could show excellent performance not only in terms of overall performance but also in terms of the recommendation success rate of the unpopular product.

Social Network : A Novel Approach to New Customer Recommendations (사회연결망 : 신규고객 추천문제의 새로운 접근법)

  • Park, Jong-Hak;Cho, Yoon-Ho;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.123-140
    • /
    • 2009
  • Collaborative filtering recommends products using customers' preferences, so it cannot recommend products to the new customer who has no preference information. This paper proposes a novel approach to new customer recommendations using the social network analysis which is used to search relationships among social entities such as genetics network, traffic network, organization network, etc. The proposed recommendation method identifies customers most likely to be neighbors to the new customer using the centrality theory in social network analysis and recommends products those customers have liked in the past. The procedure of our method is divided into four phases : purchase similarity analysis, social network construction, centrality-based neighborhood formation, and recommendation generation. To evaluate the effectiveness of our approach, we have conducted several experiments using a data set from a department store in Korea. Our method was compared with the best-seller-based method that uses the best-seller list to generate recommendations for the new customer. The experimental results show that our approach significantly outperforms the best-seller-based method as measured by F1-measure.

  • PDF

Enhanced Recommendation Algorithm using Semantic Collaborative Filtering: E-commerce Portal (전자상거래 포탈을 위한 시맨틱 협업 필터링을 이용한 확장된 추천 알고리즘)

  • Ahmed, Shohel;Kim, Jong-Woo;Kang, Sang-Gil
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.79-98
    • /
    • 2011
  • This paper proposes a semantic recommendation technique for a personalized e-commerce portal. Semantic recommendation is achieved by utilizing the attributes of products. The semantic similarity of the products is merged with the rating information of the products to provide an accurate recommendation. The recommendation technique also analyzes various attitudes of the customer to evaluate the implicit rating of products. Attitudes are classifies into three types such as "purchasing product", "adding product to shopping cart", and "viewing the product information." We implicitly track customer attitude to estimate the rating of products for recommending products. Also we implement a session validation process to identify the valid sessions that are highly important for giving an accurate recommendation. Our recommendation technique shows a high degree of accuracy as we use age groupings of customers with similar preferences. The experimental section shows that our proposed recommendation method outperforms well known collaborative filtering methods not only for the existing customer, but also for the new user with no previous purchase record.