• 제목/요약/키워드: Neutronic performance

검색결과 31건 처리시간 0.021초

Improving the Neutronic Characteristics of a Boiling Water Reactor by Using Uranium Zirconium Hydride Fuel Instead of Uranium Dioxide Fuel

  • Galahom, Ahmed Abdelghafar
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.751-757
    • /
    • 2016
  • The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide ($UO_2$) and uranium zirconium hydride ($UZrH_{1.6}$) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with $UO_2$ contains $8{\times}8$ fuel rods while that fueled with $UZrH_{1.6}$ contains $9{\times}9$ fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. $UZrH_{1.6}$ fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

Design Study of LAR Tokamak Reactor with a Self-consistent System Analysis Code

  • Hong, B.G.;Lee, D.W.;Kim, S.K.;Kim, D.H.;Lee, Y.O.;Hwang, Y.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.314-314
    • /
    • 2010
  • The design of the blanket and shield play a key role in determining the size of a reactor since it has an impact on the various reactor components. The blanket should produce enough tritium for tritium self-sufficiency and the shield should provide sufficient protection for the superconducting TF coil. Neutronic optimization of the blanket and the shield is necessary, and we coupled the system analysis with a neutronic calculation to account for the interrelation of the blanket and shield with the plasma performance of a reactor system in a self-consistent manner. By using the coupled system analysis code, the operational space for a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil is investigated with an spect ratio in the range of 1.5 - 2.5. The minimum major radius which satisfies all the physics and engineering requirements increases with the magnetic field at the magnetic axis. A required inboard shield thickness is mainly determined by the requirement on the protection of the TF coil against radiation damage. It is shown that to have a fusion power bigger than 3,000 MW in the LAR tokamak with a superconducting TF coil, a major radius bigger than 4.0 m is required.

  • PDF

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

Optimization of reactivity control in a small modular sodium-cooled fast reactor

  • Guo, H.;Buiron, L.;Sciora, P.;Kooyman, T.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1367-1379
    • /
    • 2020
  • The small modular sodium-cooled fast reactor (SMSFR) is an important component of Generation-IV reactors. The objective of this work is to improve the reactivity control in SMSFR by using innovative systems, including burnable poisons and optimized control rods. SMSFR with MOX fuel usually exhibits high burnup reactivity loss that leads to high excess reactivity and potential fuel melting in control rod withdrawal (CRW) accidents, which becomes an important constraint on the safety and economic efficiency of SMSFR. This work applies two types of burnable poisons in a SMSFR to reduce the excess reactivity. The first one homogenously loads minor actinides in the fuel. The second one combines absorber and moderators in specific assemblies. The influence of burnable poisons on the core characteristics is discussed and integrated into the analysis of CRW accidents. The results show that burnable poisons improve the safety performance of the core in a significant way. Burnable poisons also lessen the demand for the number, absorption ability, and insertion depth of control rods. Two optimized control rod designs with rare earth oxides (Eu2O3 and Gd2O3) and moderators are compared to the conventional design with natural boron carbide (B4C). The optimized designs show improved neutronic and safety performance.

A REVIEW OF INHERENT SAFETY CHARACTERISTICS OF METAL ALLOY SODIUM-COOLED FAST REACTOR FUEL AGAINST POSTULATED ACCIDENTS

  • SOFU, TANJU
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.227-239
    • /
    • 2015
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, doublefault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel-coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

Performance evaluation of METAMIC neutron absorber in spent fuel storage rack

  • Kim, Kiyoung;Chung, Sunghwan;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.788-793
    • /
    • 2018
  • High-density spent fuel (SF) storage racks have been installed to increase SF pool capacity. In these SF racks, neutron absorber materials were placed between fuel assemblies allowing the storage of fuel assemblies in close proximity to one another. The purpose of the neutron absorber materials is to preclude neutronic coupling between adjacent fuel assemblies and to maintain the fuel in a subcritical storage condition. METAMIC neutron absorber has been used in high-density storage racks. But, neutron absorber materials can be subject to severe conditions including long-term exposure to gamma radiation and neutron radiation. Recently, some of them have experienced degradation, such as white spots on the surface. Under these conditions, the material must continue to serve its intended function of absorbing neutrons. For the first time in Korea, this article uses a neutron attenuation test to examine the performance of METAMIC surveillance coupons. Also, scanning electron microscope analysis was carried out to verify the white spots that were detected on the surface of METAMIC. In the neutron attenuation test, there was no significant sign of boron loss in most of the METAMIC coupons, but the coupon with white spots had relatively less B-10 content than the others. In the scanning electron microscope analysis, corrosion material was detected in all METAMIC coupons. Especially, it was confirmed that the coupon with white spots contains much more corrosion material than the others.

Validation of Serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelín II VVER-1000 reactor

  • Garcia, Manuel;Vocka, Radim;Tuominen, Riku;Gommlich, Andre;Leppanen, Jaakko;Valtavirta, Ville;Imke, Uwe;Ferraro, Diego;Uffelen, Paul Van;Milisdorfer, Lukas;Sanchez-Espinoza, Victor
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3133-3150
    • /
    • 2021
  • This work deals with the validation of a high-fidelity multiphysics system coupling the Serpent 2 Monte Carlo neutron transport code with SUBCHANFLOW, a subchannel thermalhydraulics code, and TRANSURANUS, a fuel-performance analysis code. The results for a full-core pin-by-pin burnup calculation for the ninth operating cycle of the Temelín II VVER-1000 plant, which starts from a fresh core, are presented and assessed using experimental data. A good agreement is found comparing the critical boron concentration and a set of pin-level neutron flux profiles against measurements. In addition, the calculated axial and radial power distributions match closely the values reported by the core monitoring system. To demonstrate the modeling capabilities of the three-code coupling, pin-level neutronic, thermalhydraulic and thermomechanic results are shown as well. These studies are encompassed in the final phase of the EU Horizon 2020 McSAFE project, during which the Serpent-SUBCHANFLOW-TRANSURANUS system was developed.

Shield Material Consideration in the LAR Tokamak Reactor

  • Hong, B.G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.314-314
    • /
    • 2010
  • For the optimal design of a tokamak-type reactor, self-consistent determination of a radial build of reactor systems is important and the radial build has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor systems. In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the shield should provide sufficient protection for the superconducting TF coil and the shield plays a key role in determining the size of a reactor. To determine the radial build of a reactor, neutronic effects such as tritium breeding in the blanket, nuclear heating, and radiation damage to toroidal field (TF) coil has to be included in the systems analysis. In this work, the outboard blanket only is considered where tritium self-sufficiency is possible by using an inboard neutron reflector instead of breeding blanket. The reflecting shield should provide not only protection for the superconducting TF coil but also improved neutron economy for the tritium breeding in outboard blanket. Tungsten carbide, metal hydride such as titanium hydride and zirconium hydride can be used for improved shielding performance and thus smaller shield thickness. With the use of advanced technology in the shield, conceptual design of a compact superconducting LAR reactor with aspect ratio of less than 2 will be presented as a viable power plant.

  • PDF

Modeling of neutron diffractometry facility of Tehran Research Reactor using Vitess 3.3a and MCNPX codes

  • Gholamzadeh, Z.;Bavarnegin, E.;Rachti, M.Lamehi;Mirvakili, S.M.;Dastjerdi, M.H.Choopan;Ghods, H.;Jozvaziri, A.;Hosseini, M.
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.151-158
    • /
    • 2018
  • The neutron powder diffractometer (NPD) is used to study a variety of technologically important and scientifically driven materials such as superconductors, multiferroics, catalysts, alloys, ceramics, cements, colossal magnetoresistance perovskites, magnets, thermoelectrics, zeolites, pharmaceuticals, etc. Monte Carlo-based codes are powerful tools to evaluate the neutronic behavior of the NPD. In the present study, MCNPX 2.6.0 and Vitess 3.3a codes were applied to simulate NPD facilities, which could be equipped with different optic devices such as pyrolytic graphite or neutron chopper. So, the Monte Carlo-based codes were used to simulate the NPD facility of the 5 MW Tehran Research Reactor. The simulation results were compared to the experimental data. The theoretical results showed good conformity to experimental data, which indicates acceptable performance of the Vitess 3.3a code in the neutron optic section of calculations. Another extracted result of this work shows that application of neutron chopper instead of monochromator could be efficient to keep neutron flux intensity higher than $10^6n/s/cm^2$ at sample position.