Browse > Article
http://dx.doi.org/10.1016/j.net.2019.12.015

Optimization of reactivity control in a small modular sodium-cooled fast reactor  

Guo, H. (Alternative Energies and Atomic Energy Commission, CEA)
Buiron, L. (Alternative Energies and Atomic Energy Commission, CEA)
Sciora, P. (Alternative Energies and Atomic Energy Commission, CEA)
Kooyman, T. (Alternative Energies and Atomic Energy Commission, CEA)
Publication Information
Nuclear Engineering and Technology / v.52, no.7, 2020 , pp. 1367-1379 More about this Journal
Abstract
The small modular sodium-cooled fast reactor (SMSFR) is an important component of Generation-IV reactors. The objective of this work is to improve the reactivity control in SMSFR by using innovative systems, including burnable poisons and optimized control rods. SMSFR with MOX fuel usually exhibits high burnup reactivity loss that leads to high excess reactivity and potential fuel melting in control rod withdrawal (CRW) accidents, which becomes an important constraint on the safety and economic efficiency of SMSFR. This work applies two types of burnable poisons in a SMSFR to reduce the excess reactivity. The first one homogenously loads minor actinides in the fuel. The second one combines absorber and moderators in specific assemblies. The influence of burnable poisons on the core characteristics is discussed and integrated into the analysis of CRW accidents. The results show that burnable poisons improve the safety performance of the core in a significant way. Burnable poisons also lessen the demand for the number, absorption ability, and insertion depth of control rods. Two optimized control rod designs with rare earth oxides (Eu2O3 and Gd2O3) and moderators are compared to the conventional design with natural boron carbide (B4C). The optimized designs show improved neutronic and safety performance.
Keywords
Small modular reactors; Sodium-cooled fast reactors; Reactivity control; Burnable poisons; Innovative control rods;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Massara, J. Tommasi, M. Vanier, O. Koberl, Dynamics of critical dedicated cores for minor actinide transmutation, Nucl. Technol. 149 (2) (Feb. 2005) 150-174.   DOI
2 J.C. Melis, L. Roche, J.P. Piron, J. Truffert, "GERMINAL - a computer code for predicting fuel pin behaviour, J. Nucl. Mater. 188 (Jun. 1992) 303-307.   DOI
3 J.-C. Melis, J.-P. Piron, L. Roche, Fuel modeling at high burn-up: recent development of the GERMINAL code, J. Nucl. Mater. 204 (Sep. 1993) 188-193.   DOI
4 M. Lainet, B. Michel, J.-C. Dumas, K. Samuelsson, M. Pelletier, Current status and progression of GERMINAL fuel performance code for SFR oxide fuel pins, in: International Conference on Fast Reactors and Related Fuel Cycles - FR17, Yekaterinburg, Russian Federation, 2017. IAEA-CN245-222.
5 P. Emonot, A. Souyri, J.L. Gandrille, F. Barre, CATHARE-3: a new system code for thermal-hydraulics in the context of the NEPTUNE project, Nucl. Eng. Des. 241 (11) (Nov. 2011) 4476-4481.   DOI
6 H. Guo, G. Martin, L. Buiron, Improvement of sodium fast reactor control rods calculations with APOLLO3, in: ICAPP-2018, Charlotte, North Carolina, USA, 2018. Paper No. 24142.
7 J. Guidez, Phenix : Le Retour D 'experience, EDP Sciences, 2013.
8 R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys, J. Nucl. Mater. 341 (2) (May 2005) 103-114.   DOI
9 P. Reuss, Neutron Physics. Les Ulis, EDP Sciences, France, 2009.
10 A.E. Waltar, D.R. Todd, P.V. Tsvetkov (Eds.), Fast Spectrum Reactors, Springer, Boston, MA, USA, 2012.
11 GIF, Technology Roadmap Update for Generation IV Nuclear Energy Systems, GIF, Jan. 2014.
12 Fast Reactor Database 2006 Update, IAEA, Vienna, Austria, 2006. IAEA-TEC-DOC-1531.
13 IAEA, Liquid Metal Coolants for Fast Reactors Cooled by Sodium, Lead, and Lead-Bismuth Eutectic, vol. 6, 2012. Vienna, Austria, NP-T-1.
14 Deployment Indicators for Small Modular Reactors - Methodology, Analysis of Key Factors and Case Studies, IAEA, Vienna, Austria, 2018. IAEA-TECDOC-1854.
15 F. Aydogan, 20 - advanced small modular reactors, in: I.L. Pioro (Ed.), In Handbook of Generation IV Nuclear Reactors, Woodhead Publishing, 2016, pp. 661-699.
16 Y.-K. Lee, E. Brun, X. Alexandre, SFR whole core burnup calculations with TRIPOLI-4 Monte Carlo code, in: Presented at the PHYSOR 2014, Kyoto, 2014. JAPAN.
17 J. Vujic, R.M. Bergmann, R. Skoda, M. Miletic, Small modular reactors: simpler, safer, cheaper? Energy 45 (1) (Sep. 2012) 288-295.   DOI
18 Y.I. Chang, et al., Small modular fast reactor design description, Jul. 2005. ANL, CEA and JNC, ANL-SMFR-1.
19 B.S. Triplett, E.P. Loewen, B.J. Dooies, PRISM: a competitive small modular sodium-cooled reactor, Nucl. Technol. 178 (2) (May 2012) 186-200.   DOI
20 A. Calame, J.F. Lebrat, L. Buiron, Preliminary analysis of the TRAPU irradiation with TRIPOLI-4(R) and APOLLO3(R) for the validation of fast reactor decay heat calculations, in: ICAPP-2019, 2019.
21 H. Guo, L. Buiron, T. Kooyman, P. Sciora, Optimized control rod designs for Generation-IV fast reactors using alternative absorbers and moderators, Ann. Nucl. Energy 132 (Oct. 2019) 713-722.   DOI
22 H. Guo, L. Buiron, Innovative sodium fast reactors control rod design, in: Presented at the Atoms for the Future 2018 & 4th GIF Symposium, 2018. Paris, France.
23 J.C. Gauthier, et al., Measurement and predictions of control rod worth, Nucl. Sci. Eng. 106 (1) (Sep. 1990) 18-29.   DOI
24 B. Kryger, D. Gosset, J.M. Escleine, Irradiation Performances of the Superphenix Type Absorber Element, CEA, 1995. CEA-CONF-12392.
25 Ph Dunner, H.-J. Heuvel, M. Horle, Absorber materials for control rod systems of fast breeder reactors, J. Nucl. Mater. 124 (Supplement C) (May 1984) 185-194.   DOI
26 H. Guo, P. Sciora, T. Kooyman, L. Buiron, Evaluation of the control rods withdrawal in a small modular sodium fast reactor and analysis of the impact on the core design, in: ICAPP-2019, Juan-les-Pins, France, 2019. Paper No. 000139.
27 N. Ueda, I. Kinoshita, A. Minato, S. Kasai, T. Yokoyama, S. Maruyama, Sodium cooled small fast long-life reactor '4S, Prog. Nucl. Energy 47 (1-4) (2005) 222-230.   DOI
28 R. Taylor, Reprocessing and Recycling of Spent Nuclear Fuel, Elsevier, 2015.
29 H. Guo, P. Sciora, L. Buiron, T. Kooyman, Design directions of optimized reactivity control systems in sodium fast reactors, Nucl. Eng. Des. 341 (Jan. 2019) 239-247.   DOI
30 H. Guo, T. Kooyman, P. Sciora, L. Buiron, Application of minor actinides as burnable poisons in sodium fast reactors, Nuclear Technology (Jun. 2019).
31 H. Guo, P. Sciora, T. Kooyman, L. Buiron, G. Rimpault, Application of boron carbide as burnable poison in sodium fast reactors, Nuclear Technology (Jun. 2019).
32 G. Rimpault, et al., The ERANOS code and data system for fast reactor neutronic analysis, in: PHYSOR-2002, 2002. Seoul, Korea.
33 D. Schneider, et al., APOLLO3(R): CEA/DEN deterministic multi-purpose code for reactor physics analysis, in: PHYSOR-2016, 2016, pp. 2274-2286. Idaho USA.
34 D. Sciannandrone, S. Santandrea, R. Sanchez, Optimized tracking strategies for step MOC calculations in extruded 3D axial geometries, Ann. Nucl. Energy 87 (Jan. 2016) 49-60.   DOI
35 J.Y. Moller, J.J. Lautard, D. Schneider, Minaret, a deterministic neutron transport solver for nuclear core calculations, in: M&C-2011, 2011. Rio de Janeiro, RJ, Brazil.
36 E. Brun, et al., TRIPOLI-4(R), CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82 (Aug. 2015) 151-160.   DOI
37 H. Guo, P. Archier, J.-F. Vidal, L. Buiron, Advanced method for depletion calculation of control rods in sodium fast reactors, Ann. Nucl. Energy 129 (Jul. 2019) 160-168.   DOI
38 H. Guo, et al., Advanced method for neutronic simulation of control rods in sodium fast reactors: numerical and experimental validation, Ann. Nucl. Energy 129 (Jul. 2019) 90-100.   DOI