• 제목/요약/키워드: Neutron source

검색결과 326건 처리시간 0.086초

SCBF 장치에서 이온전류에 대한 포텐셜 우물 구조의 영향 (Effect of Potential Well Structure on Ion Current in SCBF Device)

  • 주흥진;박정호;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.471-477
    • /
    • 2007
  • SCBF(Spherically Convergent Beam Fusion) device has been studied as a neutron source. Neutron production rate is a most important factor for the application of SCBF device and is proportional to the square of the ion current[1]. It is regarded generally that some correlations between the potential well structure and the ion current exist. In this paper, the ion current and potential distribution were calculated in a variety of grid cathode geometries using FEM-FCT method. Single potential well structure was certified inside the grid cathode. The deeper the potential well became, the higher the ion current due to the high electric field near the grid cathode became.

구형 집속 빔 핵융합 장치에서 그리드 음극 구조의 최적 설계 (Optimal Design of Grid Cathode Structure in Spherically Convergent Beam Fusion Device)

  • 주흥진;박정호;황휘동;최승길;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제21권4호
    • /
    • pp.381-387
    • /
    • 2008
  • Neutron production rate in spherically convergent beam fusion(SCBF) device as a portable neutron source strongly depends on the ion current and the grid cathode structure. In this paper, as the process of design and analysis, Design of Experiment(DOE) based on the results by Finite Element Method-Flux Corrected Transport(FEM-FCT) method is employed to calculate the ion current. This method is very useful to find optimal design conditions in a short time. Number of rings, radius of rings, and distance between the grid cathode and center are selected as control factors. From the results in the optimized model, the higher ion current is calculated and deeper potential well is also observed.

Prospects of the gravitational wave astronomy

  • Lee, Hyung Mok
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.27.4-28
    • /
    • 2021
  • Since the first direct detection of the gravitational waves in 2015, more than 50 events coming from the merging of compact binaries composed of black holes and neutron stars have been observed. The simultaneous detection of gravitational waves and electromagnetics waves from the merging of neutron stars opened up multi-messenger astronomy. The forthcoming observations with better sensitivity by the network of ground based detectors will enrich the gravitational wave source populations and provide valuable information regarding stellar evolution, dynamics of dense stellar systems, and star formation history across the cosmic time. The precision of the Hubble constant from the distance measurement of gravitational sources will improve with more binary neutron star events are observed together with the aftweglows. I will also briefly cover the expected scientiic outcomes from the future detectors that are sensitive to much lower frequenies than current detectors.

  • PDF

하나로 원자로에 설치될 대향 이상 열사이펀 루프에 관한 실험 (A Closed Counter-Current Two-Phase Thermosyphon Loop of a Cold Neutron Source in HANARO Research Reactor)

  • 황권상;조만순;성형진
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1038-1045
    • /
    • 2000
  • An experimental study was carried out to delineate the flow characteristics in a closed countescurrent two-phase thermo syphon with concentric tubes. This is to be installed in the HANARO research reactor as a part of a Cold Neutron Source(CNS). In the present investigation, experiments ata room temperature with Freon-II3 as a moderator were performed. Results show that, based on the magnitude of pressure fluctuation, the flow regimes could be divided into 4 distinct ones in the ($V_f,\;Q_i$) plane, where $V_f$ represents the volume of the charged liquid and $Q_i$ the heat load: a stable flow regime, an oscillatory flow regime, a restablized flow regime and a dryout flow regime. For $V_f$>2.5l, the flow is stable at low $Q_i$. However, as $Q_i$ increases, the flow becomes oscillatory and finally restablizes As $V_f$ increases, the oscillation amplitude decreases, reaching to the restablized flow region at low $Q_i$, and the liquid level in the moderator cell remains high. In the oscillatory flow regimes, for a fixed VI; the oscillating period of time varies with $Q_i$, having a minimum value at a certain value of $Q_i$. The heat load, where the oscillating period of time is minimum, decreases as $V_f$ increases.

Development of Large-Area RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Chang, Doo-Hee;Jeong, Seung Ho;Kim, Tae-Seong;Park, Min;Lee, Kwang Won;In, Sang Ryul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.179.2-179.2
    • /
    • 2013
  • A large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER device. Negative hydrogen ion sources are major components of neutral beam injection (NBI) systems in future large-scale fusion experiments such as ITER and DEMO. The RF sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck-Institute for Plasma Physics), Garching, for the ASDEX-U and W7-AS neutral beam heating systems. Ion sources of the first NBI system (NBI-1) for the KSTAR tokamak have been developed successfully with a bucket plasma generator based on the filament arc discharge, which have contributed to achieve a good plasma performance such as 15 sec H-mode operation with an injection of 3.5 MW NB power. There is a development plan of RF ion source at the KAERI to extract the positive ions, which can be used for the second NBI system (NBI-2) of the KSTAR and to extract the negative ions for future fusion devices such as Fusion Neutron Source and Korea-DEMO. The development progresses of RF ion source at the KAERI are described in this presentation.

  • PDF

하나로 냉중성자원 감속재의 냉강에 대한 연구 (A Study on Cooling of the CNS Moderator in HANARO)

  • 박국남;박종학;조만순;최창웅;유성연
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.177-181
    • /
    • 1999
  • Cold Neutron Source(CNS) facility comprises moderator circulation system, helium cooling system, neutron guide and auxiliary sistems. To increase the amount of cold neutron, the thermal neutron should pass cold moderator at cryogenic temperature. As cold moderator in Hanaro, the liquid hydrogen or liquid deuterium will be used and the temperature in operation will be used and the temperature in operation will be maintained to be $250^{\circ}C$ below zero. To maintain the moderator at this cryogenic temperature. He refrigerator is used to cool it down in thermosiphon having natural circulation. As a part of the conceptual design of Hanaro CNS, study on the characteristics of moderators, design of moderator chanmber and cooling method were done through the collaboration of Korea Atomic Energy Research Institute and Petersburg Nuclear Physics Institute. During the collaboration, a program for the design of moderator cooling system design concept through the parametric study using this program. In the parametric study, the effect of the moderator type on the design parameters was investigated. Also, the requirements on the performance test for the cooling system, which will be made before the basic design, were investigated.

  • PDF

나노 박막의 표면분석을 위한 열중성자 기반 수평형 반사율 장치의 몬테카를로 시뮬레이션 (Montecarlo Simulation of the thermal neutron reflectometer with horizontal sample geometry for surface characterization of nanostructured thin films)

  • 이종오;신관우;이정수;조상진;이창희;소지용
    • 한국진공학회지
    • /
    • 제14권3호
    • /
    • pp.119-125
    • /
    • 2005
  • 원자로의 중성자 빔을 사용하는 수평형 반사율 장치는 중성자 고유의 투과성 및 낮은 에너지의 비파괴성과 함께 시편을 수평으로 놓을 수 있는 장점을 가지고 수 나노미터 이내의 박막의 두께와 밀도를 측정하기 위하여 활용되는 새로운 장치이다. 원자력연구소에 열 중성자를 기반으로 개발을 추진하고 있으나, 아직 국내에 설치되어 있지 않아서 장치의 개념 및 최적화를 위한 시뮬레이션이 시급하다. 따라서 열중성자에 해당하는 $2.5{\AA}$를 기반으로 몬테카를로 시뮬레이션을 이용하는 MCSTAS를 이용하여 장치의 개념을 설계하였다. 단색기와 collimator, 그리고 초거울등의 설계 및 각 변수들은 설계의 목표인 최대 Flux를 갖는 중성자 빔 세기를 고려하여 결정하였다.

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • 분석과학
    • /
    • 제35권2호
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

중성자 영상 분석을 활용한 고대 제철법 재현 사철강괴의 금속학적 특성 연구 (A Study on the Metallurgical Characteristics for Sand Iron Ingot Reproduced by the Traditional Iron-making Method on Ancient Period under the Neutron Imaging Analysis)

  • 조성모;김종열;;김태주;조남철
    • 보존과학회지
    • /
    • 제35권6호
    • /
    • pp.631-640
    • /
    • 2019
  • 본 연구는 전통제철법인 정련 및 단접을 적용한 사철강괴(SI)의 미세조직을 파괴분석법인 현미경분석과 비파괴분석법인 중성자 영상 분석을 통해 분석결과를 비교하였다. 시료는 전통제철법으로 생산한 사철강괴이며, 파괴분석용의 SI-A와 비파괴분석용의 9 ㎠의 SI-B를 제작하였다. 파괴분석으로 금속현미경과 주사전자현미경이 이용되었으며, 비파괴분석으로 일본 훗카이도 대학의 소형 중성자원 이용시설을 통한 중성자 영상 분석을 이용하였다. 파괴분석결과 미세한 ferrite 및 pearlite가, 시료의 가장자리에서 Widmanstätten ferrite와 조대한 ferrite가 관찰되었다. 또한 비파괴분석법인 중성자 영상 분석 결과 체심입방격자 구조의 grain size가 3 ㎛ 정도의 α-Fe인 ferrite와 층상의 pearlite가 관찰되었다. 이렇듯 중성자 영상 분석을 이용하면 비파괴로 연구대상의 재료과학적 특성을 확인할 수 있고 문화재에 적용 시 최적의 연구결과를 얻을 수 있음을 확인하였다.