• Title/Summary/Keyword: Neutron imaging

Search Result 44, Processing Time 0.025 seconds

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

Experimental Approach for Water Discharge Characteristics at PEMFC by using Neutron Imaging Technique considered Neutron Flux and Linear Attenuation Coefficient of Thermal Neutron Correction at NRF, HANARO (중성자속 및 선형 흡수 계수 보정을 고려한 중성자영상법을 이용한 PEMFC 내의 물 배출 특성에 관한 실험적 연구)

  • Kim, Tae-Joo;Kim, Jong-Rok;Kim, Moo-Hwan;Sim, Cheul-Muu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3418-3422
    • /
    • 2007
  • The neutron imaging technique was used to investigate the water discharge characteristics at PEMFC. Prior to investigation of water discharge characteristics, the linear attenuation coefficient for water at Neutron Radiography Facility (NRF) was calibrated. The feasibility test apparatus was consisted of pressurized air and water in order to simulate the actual operating PEMFC. The feasibility tests have been performed at 1-parallel serpentine type with 100 $cm^2$ active area and different air flow rate (1, 2, and 4 lpm). The total water volume variations at each condition were calculated from the neutron images. The water at channel is well discharged as soon as supplying the pressurized air into the PEMFC. However, because the water at MEA isn't removed the total water volume is constant after 150. Therefore more effective method is needed in order to discharge water at MEA, and the neutron imaging technique is helpful for it.

  • PDF

Visualization of 2-Phase Flow at Heat Pipe using Neutron Imaging Technique (중성자 영상법을 이용한 Heat Pipe 내의 이상유동 가시화)

  • Kim, TaeJoo;Park, SuJi;Kim, JongYul;Doh, SeungWoo
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.15-21
    • /
    • 2016
  • The circular and flat heat pipe were experimentally investigated by using neutron imaging technique. This experimental study was performed at the DINGO of OPAL research reactor, Australia. The diameter of the circular heat pipe is 10 mm and the dimension of flat is $10(width){\times}3(thickness)mm2$, respectively. We used the distilled water as a coolant. The coolant distributions and 2-phase flow patterns were measured under heating conditions. Experimental results show that neutron imaging technique is a good tool to visualize the 2-phase flow and phenomena in the heat pipe. The coolant distributions and 2-phase flow patterns depend on installation posture of the heat pipe and volume ratio of the coolant. Finally, it was discussed to calculate the void fraction by neutron imaging technique.

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.

VISUALIZATION OF THE INTERNAL WATER DISTRIBUTION AT PEMFC USING NEUTRON IMAGING TECHNOLOGY: FEASIBILITY TEST AT HANARO

  • Kim Tae-Joo;Jung Yong-Mi;Kim Moo-Hwan;Sim Cheul-Muu;Lee Seung-Wook;Jeon Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.449-454
    • /
    • 2006
  • Neutron imaging technique was used to investigate the water distribution and movement in Polymer Electrolyte Membrane Fuel Cell (PEMFC) at HANARO, KAERI. The Feasibility tests were performed in the first and second exposure rooms at the neutron radiography facility (NRF) at HANARO in order to check the ability of each exposure room, respectively. The feasibility test apparatus was composed of water and pressurized air before making up the actual test apparatus. Due to the low neutron intensity in the second exposure room, the exposure time was too long to investigate the transient phenomena of PEMFC. Although the exposure time was improved to 0.1 sec in the first exposure room, it was difficult to discriminate detail water movement at the channel due to the high noise level. Therefore, the experimental setup must be optimized according to the test conditions. Water discharge characteristics were investigated under different flow field geometries by using feasibility test apparatus and the neutron imaging technique. The water discharge characteristics of a 3-parallel serpentine are superior to those of a 1-parallel serpentine, but water at Membrane Electrode Assembly (MEA) was not removed, regardless of the flow field type.

A Study on the Metallurgical Characteristics for Sand Iron Ingot Reproduced by the Traditional Iron-making Method on Ancient Period under the Neutron Imaging Analysis (중성자 영상 분석을 활용한 고대 제철법 재현 사철강괴의 금속학적 특성 연구)

  • Cho, Sung Mo;Kim, Jong Yul;Sato, Hirotaka;Kim, TaeJoo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.631-640
    • /
    • 2019
  • The purpose of this study was to compare analytical results of sand iron bars reproduced by the traditional iron-making method through a destructive analysis and a non-destructive analysis. For these studies, we produced two types of samples. One was sample(SI-A), a part of the sand iron bar for destructive analysis. The other was SI-B(9 ㎠) for non-destructive analysis. A metallurgical microscope and scanning electron microscope were used for the destructive analysis, and neutron imaging analysis with the Hokkaido University Neutron Source (HUNS) at Hokkaido University, Japan, was used for the non-destructive analysis. The results obtained by destructive analysis showed that there was ferrite and pearlite of fine crystallite size, and some of these showed Widmanstätten ferrite microstructure grown within the pearlite and coarse ferrite at the edge of the specimen. The results from the neutron imaging analysis showed that there was also ferrite and pearlite with 3 ㎛ α-Fe of BCC structure. Based on these results, neutron imaging analysis is capable of identifying material characteristics without destroying the object and obtaining optimal research results when applying it to objects of cultural heritage.

A high-density gamma white spots-Gaussian mixture noise removal method for neutron images denoising based on Swin Transformer UNet and Monte Carlo calculation

  • Di Zhang;Guomin Sun;Zihui Yang;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.715-727
    • /
    • 2024
  • During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.

EXPERIMENTAL APPROACHES FOR WATER DISCHARGE CHARACTERISTICS IN PEMFC USING NEUTRON IMAGING TECHNIQUE AT CONRAD, HMI

  • Kim, Tae-Joo;Kim, Jong-Rok;Sim, Cheul-Muu;Lee, Sung-Ho;Son, Young-Jin;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.135-142
    • /
    • 2009
  • In this investigation, we prepared a 1 and 3-parallel serpentine single PEMFC, which has an active area of $100\;cm^2$ and a flow channel cross section of $1{\times}1mm$. Distribution and transport of water in a non-operating PEMFC were observed by varying flow types and the flow rates (250, 400, and 850 cc/min). This investigation was performed at the neutron imaging facility at the CO1d Neutron RAdiography facility (CONRAD), HMI, Germany of which the collimation ratio and neutron fluence rate are 250, $1{\times}10^{6}n/s/cm^2$, respectively. The neutron image was continuously recorded by a scintillator and lens-CCD coupled detector system every 10 seconds. It has been observed that although the distilled water was supplied into the cathode channel only, the neutron image showed a water movement from the cathode to the anode channel. The water at the cathode channel was completely discharged as soon as the pressurized air was supplied. But the water at the anode channel was not easily removed by the pressurized air except for the 3-parallel serpentine type with 850cc/min of air flow rate. Moreover, the water at the MEA wasn't removed for any of the cases.

Study on Talbot Pattern for Grating Interferometer (격자간섭계를 위한 탈봇 패턴 연구)

  • Kim, Youngju;Oh, Ohsung;Kim, Jongyul;Lee, Seung Wook
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.39-49
    • /
    • 2015
  • One of properties which X-ray and Neutron can be applied nondestructive test is penetration into the object with interaction leads to decrease in intensity. X-ray interaction with the matter caused by electrons, Neutron caused by atoms. They share applications in nondestructive test area because of their similarities of interaction mechanism. Grating interferometer is the one of applications produces phase contrast image and dark field image. It is defined by Talbot interferometer and Talbot-Lau interferometer according to Talbot effect and Talbot-Lau effect respectively. Talbot interferometer works with coherence beam like X-ray, and Talbot-Lau has an effect with incoherence beam like Neutron. It is important to expect the interference in grating interferometer compared normal nondestructive system. In this paper, simulation works are conducted according to Talbot and Talbot-Lau interferometer in case of X-ray and Neutron. Variation of interference intensity with X-ray and Neutron based on wave theory is constructed and calculate elements consist the system. Additionally, Talbot and Talbot-Lau interferometer is simulated in different kinds of conditions.

Visualization of Water Distribution in Cathode Side of a Direct Methanol Fuel Cell Using Neutron Radiography (중성자 라디오그래피 방법을 이용한 직접 메탄올 연료전지 공기극의 내부 물 분포 가시화)

  • Je, Jun-Ho;Doh, Sung-Woo;Kim, Tae-Joo;Kim, Jong-Rok;Xie, Xiaofeng;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.965-970
    • /
    • 2012
  • In this study, the water distribution in the cathode side of a direct methanol fuel cell (DMFC) is visualized using a neutron imaging technique at the Neutron Radiography Facility (NRF), KAERI. It is difficult to quantify the water content in the cathode side because of $CO_2$ gas. A compared open circuit voltage (OCV) image, relative $CO_2$, and water distribution can be visualized by the neutron imaging technique. This means that the neutron imaging technique is useful for the optimization of the flow field design and the establishment of water management, and, in turn, for the improvement of the cell performance.