DOI QR코드

DOI QR Code

Visualization of Water Distribution in Cathode Side of a Direct Methanol Fuel Cell Using Neutron Radiography

중성자 라디오그래피 방법을 이용한 직접 메탄올 연료전지 공기극의 내부 물 분포 가시화

  • Je, Jun-Ho (Division of Advanced of Nuclear Engineering, Pohang University of Science and Technology) ;
  • Doh, Sung-Woo (Division of Advanced of Nuclear Engineering, Pohang University of Science and Technology) ;
  • Kim, Tae-Joo (The Korea Atomic Energy Research Institute) ;
  • Kim, Jong-Rok (The Korea Atomic Energy Research Institute) ;
  • Xie, Xiaofeng (Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Kim, Moo-Hwan (Division of Advanced of Nuclear Engineering, Pohang University of Science and Technology)
  • 제준호 (포항공과대학교 첨단원자력공학부) ;
  • 도승우 (포항공과대학교 첨단원자력공학부) ;
  • 김태주 (한국원자력연구원) ;
  • 김종록 (한국원자력연구원) ;
  • ;
  • 김무환 (포항공과대학교 첨단원자력공학부)
  • Received : 2011.08.25
  • Accepted : 2012.07.31
  • Published : 2012.10.01

Abstract

In this study, the water distribution in the cathode side of a direct methanol fuel cell (DMFC) is visualized using a neutron imaging technique at the Neutron Radiography Facility (NRF), KAERI. It is difficult to quantify the water content in the cathode side because of $CO_2$ gas. A compared open circuit voltage (OCV) image, relative $CO_2$, and water distribution can be visualized by the neutron imaging technique. This means that the neutron imaging technique is useful for the optimization of the flow field design and the establishment of water management, and, in turn, for the improvement of the cell performance.

본 연구에서는 한국원자력연구원 중성자 영상장치와 중성자 영상법을 이용하여 운전 조건에 따른 DMFC 공기극 내부의 물 및 탄소 분포 변화를 가시화하였다. 운전 중에 연료극에서 발생하는 탄산 가스 때문에 정량적인 물량 계측은 힘들지만, 개회로 결과와 비교했을 때, 상대적으로 탄산가스와 물 분포변화를 가시화할 수 있었다. 이는 중성자 영상법은 직접 메탄올 연료전지의 공기극 채널 형상 최적화 및 적절한 물 관리에 유용한 정보를 제공할 수 있으며, 이를 바탕으로 성능 향상에 크게 기여할 것으로 예상된다.

Keywords

References

  1. Larminie, J. and Dicks, A., 2007, Fuel Cell Systems Explained, WILEY.
  2. Turhan, A., Heller, K., Brenizer, J. S. and Mench, M. M., 2006, "Quantification of Liquid Water Accumulation and Distribution in a Polymer Electrolyte Fuel Cell Using Neutron Imaging," Journal of Power Sources, Vol. 160, pp. 1195-1203. https://doi.org/10.1016/j.jpowsour.2006.03.027
  3. Hickner, M. A., Siegel, N. P., Chen, K. S., Hussey, D. S., Jacobson, D. L. and Arifc, M., 2008, "In Situ High- Resolution Neutron Radiography of Cross-Sectional Liquid Water Profiles in Proton Exchange Membrane Fuel Cells," Journal of The Electrochemical Society, Vol. 155 pp. B427-B434. https://doi.org/10.1149/1.2826287
  4. Kim, T. J., Kim, J. R., Sim, C. M., Lee, S. W., Kaviany, M., Son, S. Y. and Kim, M. H., 2009, "Experimental Approaches for Distribution and Behavior of Water in PEMFC Under Flow Direction and Differential Pressure Using Neutron Imaging Technique," Nuclear Instruments and Methods in Physics Research A, pp. 600325-600327.
  5. Manke, I., Hartnig, Ch. Grünerbel, M. and Lehnert, W., Kardjilov, N., Haibel, A., Hilger, A., Banhart, J. and Riesemeier, H., 2007, "Investigation of Water Evolution and Transport in Fuel Cells with High Resolution Synchrotron x-Ray Radiography," Applied Physics Letters, Vol. 90, p. 174105. https://doi.org/10.1063/1.2731440
  6. Hartnig, C., Manke, I., Kuhn, R., Kardjilov, N., Banhart, J. and Lehnert, W., 2008, "Cross-Sectional Insight in the Water Evolution and Transport in Polymer Electrolyte Fuel Cells," Applied Physics Letters, Vol. 92, pp. 134106. https://doi.org/10.1063/1.2907485
  7. Hartnig, C., Manke, I., Kuhn, R., Kleinau, S., Goebbels, J. and Banhart, J., 2009, "High-Resolution In-Plane Investigation of the Water Evolution and Transport in PEM Fuel Cells," Journal of Power Sources, Vol. 188 pp. 468-474. https://doi.org/10.1016/j.jpowsour.2008.12.023
  8. Maier, W., Arlt, T., Wannek, C., Manke, I., Riesemeier, H., Krüger, P., Scholta, J., Lehnert, W., Banhart, J. and Stolten, D., 2010, "In-Situ Synchrotron X-Ray Radiography on High Temperature Polymer Electrolyte Fuel Cells," Electrochemistry Communications, Vol. 12, pp. 1436-1438. https://doi.org/10.1016/j.elecom.2010.08.002
  9. Yang, H. and Zhao, T. S., 2005, "Effect of Anode Flow Field Design on the Performance of Liquid Feed Direct Methanol Fuel Cells," Electrochim Acta, Vol. 50, pp. 3243-3252. https://doi.org/10.1016/j.electacta.2004.11.060
  10. Schröder, A., Wippermann, K., Mergel, J., Lehnert, W., Stolten, D., Sanders, T., Baumhöfer, T., Sauer, D. U., Manke, I., Kardjilov, N., Hilger, A., Schloesser, J., Banhart, J. and Hartnig, C., 2009, "Combined Local Current Distribution Measurements and High Resolution Neutron Radiography of Operating Direct Methanol Fuel Cells," Electrochemistry Communications, Vol. 11, pp. 1606-1609. https://doi.org/10.1016/j.elecom.2009.06.008
  11. http://propower.co.kr/download/PRO200F.pdf.