• Title/Summary/Keyword: Neutron activator

Search Result 2, Processing Time 0.014 seconds

Nano Yttrium-90 and Rhenium-188 production through medium medical cyclotron and research reactor for therapeutic usages: A Simulation study

  • Abdollah Khorshidi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1871-1877
    • /
    • 2023
  • The main goal of the coordinated project development of therapeutic radiopharmaceuticals of Y-90 and Re-188 is to exploit advancements in radionuclide production technology. Here, direct and indirect production methods with medium reactor and cyclotron are compared to evaluate derived neutron flux and production yield. First, nano-sized 186W and 89Y specimens are suspended in water in a quartz vial by FLUKA simulation. Then, the solution is irradiated for 4 days under 9E+14 n/cm2/s neutron flux of reactor. Also, a neutron activator including three layers-lead moderator, graphite reflector, and polyethylene absorbent- is simulated and tungsten target is irradiated by 60 MeV protons of cyclotron to generate induced neutrons for 188W and 90Sr production via neutron capture. As the neutron energy reduced, the flux gradually increased towards epithermal range to satisfy (n/2n,γ) reactions. The obtained specific activities at saturation were higher than the reported experimental values because the accumulated epithermal flux and nano-sized specimens influence the outcomes. The beta emitters, which are widely utilized in brachytherapy, appeal an alternative route to locally achieve a rational yield. Therefore, the proposed method via neutron activator may ascertain these broad requirements.

Fabrication and Scintillation Characteristics of LiPO3 glass scintillators with the lanthanides activators (란탄계열 원소를 활성체로 첨가한 LiPO3 유리 섬광체의 제작과 섬광특성)

  • Whang, J.H.;Lee, J.M.;Jung, S.J.;Choi, S.H.;Sumarokov, S. Yu.
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2003
  • $LiPO_3$ glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of $LiPO_3$ glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are $950^{\circ}C$ and 90 min, respectively. It was found that Pr, Nd, Gd, Ho, Er, Tm, Yb and Lu do not work as activator; emission spectrums of samples with them were equal to those of samples without activators. In the case of samples with Europium, the peaks of emission spectrum of $Eu^{2+}$ and $Eu^{3+}$ were 420 nm and 620 nm respectively. And samples with $Ce^{3+}$ were about 380 nm, and $Tb^{3+}$ were about 550 nm. Glass scintillators with $Be^{3+}$, $Eu^{2+}$, and $Ce^{3+}$ were found to be more applicable to neutron detection. The result of neutron detection by Ra-Be sources showed that $Ce^{3+}$ was found to be the best activator of $LiPO_3$.