• Title/Summary/Keyword: Neutron absorber

Search Result 38, Processing Time 0.022 seconds

The impact of fuel depletion scheme within SCALE code on the criticality of spent fuel pool with RBMK fuel assemblies

  • Andrius Slavickas;Tadas Kaliatka;Raimondas Pabarcius;Sigitas Rimkevicius
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4731-4742
    • /
    • 2022
  • RBMK fuel assemblies differ from other LWR FA due to a specific arrangement of the fuel rods, the low enrichment, and the used burnable absorber - erbium. Therefore, there is a challenge to adapt modeling tools, developed for other LWR types, to solve RBMK problems. A set of 10 different depletion simulation schemes were tested to estimate the impact on reactivity and spent fuel composition of possible SCALE code options for the neutron transport modelling and the use of different nuclear data libraries. The simulations were performed using cross-section libraries based on both, VII.0 and VII.1, versions of ENDF/B nuclear data, and assuming continuous energy and multigroup simulation modes, standard and user-defined Dancoff factor values, and employing deterministic and Monte Carlo methods. The criticality analysis with burn-up credit was performed for the SFP loaded with RBMK-1500 FA. Spent fuel compositions were taken from each of 10 performed depletion simulations. The criticality of SFP is found to be overestimated by up to 0.08% in simulation cases using user-defined Dancoff factors comparing the results obtained using the continuous energy library (VII.1 version of ENDF/B nuclear data). It was shown that such discrepancy is determined by the higher U-235 and Pu-239 isotopes concentrations calculated.

Spark plasma sintering of UO2 fuel composite with Gd2O3 integral fuel burnable absorber

  • Papynov, E.K.;Shichalin, O.O.;Belov, A.A.;Portnyagin, A.S.;Buravlev, I.Yu;Mayorov, V.Yu;Sukhorada, A.E.;Gridasova, E.A.;Nomerovskiy, A.D.;Glavinskaya, V.O.;Tananaev, I.G.;Sergienko, V.I.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1756-1763
    • /
    • 2020
  • The paper studies spark plasma sintering (SPS) of industrially used UO2-based fuel containing integral fuel burnable absorber (IFBA) of neutrons Gd2O3. Densification dynamics of pristine UO2 powder and the one added with 2 and 8 wt% of Gd2O3 under ultrasonication in liquid has been studied under SPS conditions at 1050, 1250, and 1450 ℃. Effect of sintering temperature on phase composition as well as on O/U stoichiometry has been investigated for UO2 SPS ceramics. Sintering of uranium dioxide added with Gd2O3 yields solid solution (U,Gd)O2, which is isostructural to UO2. SEM with EDX and metallography were implemented to analyze the microstructure of the obtained UO2 ceramics and composite UO2-Gd2O3 one, particularly, open porosity, defects, and Gd2O3 distribution were studied. Microhardness, compressive strength and density were shown to reduce after addition of Gd2O3. Obtained results prove the hypothesis on formation of stable pores in the system of UO2-Gd2O3 due to Kirkendall effect that reduces sintering efficiency. The paper expands fundamental knowledge on pros and cons of fuel fabrication with IFBA using SPS technology.

Performance test and factor analysis on the performance of shutoff units with the research reactor (연구용 원자로의 정지봉 장치 성능에 미치는 인자 분석과 성능 시험)

  • Kim, Kyoung-Rean;Kim, Seoug-Beom;Ko, Jae-Myoung;Moon, Gyoon-Young;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.41-45
    • /
    • 2007
  • The shutoff unit was designed to provide rapid insertion of neutron absorbing material into the reactor core to shutdown the reactor quickly and also to withdraw the absorber slowly to avoid a log-rate trip. Four shutoff units were installed on the HANARO reactor but the half-core test facility was equipped with one shutoff unit. The reactor trip or shutdown is accomplished by four shutoff units by insertion of the shutoff rods. The shutoff rod(SOR) is actuated by a directly linked hydraulic cylinder on the reactor chimney, which is pressurized by a hydraulic pump. The rod is released to drop by gravity, when triplicate solenoid valves are de-energized to vent the cylinder. The hydraulic pump, pipe and air supply system are provided to be similar with the HANARO reactor. The shutoff rod drops for 647mm stroke within 1.13 seconds to shut down the reactor and it is slowly inserted to the full down position, 700mm, with a damping. We have conducted the drop test of the shutoff rod in order to show the performance and the structural integrity of operating system of the shutoff unit. The present paper deals with the 647mm drop time and the withdrawal time according to variation of the pool water temperature, the water level and the core flow.

HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY (사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석)

  • Kim, H.J.;Kang, G.U.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

Comparison of WABA and Gd Burnable Absorbers Nuclear Characteristics and Optimal Allocation of Gd Rods in Fuel Assembly (WABA및 가도리니움 독봉 집합체에 대한 핵특성 비교 및 집합체내 가도리니아봉 위치 최적 선정)

  • Jung, Byung-Ryul;Yi, Yu-Han;Lee, Un-Chul;Park, Chan-Oh
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.352-362
    • /
    • 1991
  • Recent popular trends in pressurized water reactor(PWR) fuel management are to extend the cycle length and to employ the low-leakage core designs for the optimal utilization of the uranium resources. In control strategy incorporated with the fuel management, turnable absorbers are required to control the power peaking and to ensure a negative moderator temperature coefficient during reactor operation. In this study, the nuclear characteristics and the optimal allocation of gadolinium-poisoned rods within the fuel assembly are considered using KWU SAV 79 A Code Package. First, analyses are carried out to compare the nuclear characteristics of the fuel assemblies contain-ing WABA(Wet Annular Burnable Absorber) and Gadolinium burnable absorbers respectively. The analyses show that the gadolinium-bearing fuel assembly has peculiar depletion characteristics ensuing from the very large thermal neutron absorption cross section. Peculiar characteristics of gadolinium provide basis for the optimal allocation of Gd rods in fuel assembly. Second, the methodology of an optimal allocation of gadolinium-poisoned rods within the fuel assembly is developed and applied to some nuclear designs.

  • PDF

Criticality effect according to axial burnup profiles in PWR burnup credit analysis

  • Kim, Kiyoung;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1708-1714
    • /
    • 2019
  • The purpose of the critical evaluation of the spent fuel pool (SFP) is to verify that the maximum effective multiplication factor ($K_{eff}$) is less than the critical safety limit at 100% stored condition of the spent fuel with the maximum reactivity. At nuclear power plants, the storage standard of spent fuel, ie, the loading curve, is established to prevent criticality from being generated in SFP. Here, the loading curve refers to a graph showing the minimum discharged burnup versus the initial enrichment of spent fuel. Recently, US NRC proposed the new critical safety assessment guideline (DSS-ISG-2010-01, Revision 0) of PWR SFPs and most of utilities in US is following it. Of course, the licensed criterion of the maximum effective multiplication factor of SFP remains unchanged and it should be less than 0.95 from the 95% probability and the 95% confidence level. However, the new guideline is including the new evaluation methodologies like the application of the axial burnup profile, the validation of depletion and criticality code, and trend analysis. Among the new evaluation methodologies, the most important factor that affects $K_{eff}$ is the axial burnup profile of spent fuel. US NRC recommends to consider the axial burnup profiles presented in NUREG-6801 in criticality analysis. In this paper, criticality effect was evaluated considering three profiles, respectively: i) Axial burnup profiles presented in NUREG-6801. ii) Representative PWR axial burnup profile. iii) Uniform axial burnup profile. As the result, the case applying the axial burnup profiles presented in NUREG-6801 showed the highest $K_{eff}$ among three cases. Therefore, we need to introduce a new methodology because it can be issued if the axial burnup profiles presented in NUREG/CR-6801 are applied to the domestic nuclear power plants without any other consideration.

High Temperature Oxidation Behavior of Nd-doped $UO_2$ (네오듐 고용 이산화우라늄의 고온 산화거동)

  • Lee, Jae-Won;Kang, Sang-Jun;Kim, Young-Hwan;Cho, Kwang-Hun;Park, Guen-IL;Lee, Jung-Won
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.227-230
    • /
    • 2013
  • The phase change of $(U_{1-x}Nd_x)_3O_8$ powder produced by oxidation of Nd-doped $UO_2$ pellet at $500^{\circ}C$ was investigated by high temperature oxidation heat treatment at $900{\sim}1500^{\circ}C$ under an air atmosphere. The XRD analysis results showed that the formation of $(U_{1-y}Nd_y)O_{2+z}$ phase and $U_3O_8$ phase from metastable $(U,Nd)_3O_8$ phase initiated at a temperature of $1000^{\circ}C$. The relative integrated intensity of $(U_{1-y}Nd_y)O_{2+z}$ phase to $U_3O_8$ phase increased with increasing of the oxidation temperature from 1100 to $1500^{\circ}C$. And also, it was found from the SEM observation that the particle size of $(U_{1-y}Nd_y)O_{2+z}$ phase increased with increasing of the oxidation temperature. However, electrone probe X-ray microanalyzer (EPMA) analysis results showed that Nd contents in $(U_{1-y}Nd_y)O_{2+z}$ phase decreased with increasing of the oxidation temperature. This behavior on the ground of XRD, SEM, and EPMA analysis data could be interpreted in terms of the transportation of U ions from $U_3O_8$ phase into $(U_{1-y}Nd_y)O_{2+z}$ phase through the interface of two phases during high temperature oxidation.

The Thermal and Mechanical Properties of Epoxy Composites Including Boron Carbide Surface Treated with Iron Oxide and Tungsten (철산화물과 텅스텐으로 표면 처리된 보론카바이드를 포함하는 에폭시 조성물의 열적·기계적 물성)

  • Kim, Taehee;Lee, Wonjoo;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.113-117
    • /
    • 2018
  • Boron carbide is lower in hardness than diamond or boron nitride but has a hardness of more than 30 GPa and is used for manufacturing tank armors and ammo shells due to its high hardness. It is also used as a neutron absorber due to its ability to absorb neutrons, which is increasing its use in nuclear power projects. Neutrons have no interaction with electrons and are known to pass through the material without interactions. Along with boron carbide, the atoms with high interaction with neutrons are hydrogen, and high hydrogen concentration polyesters and epoxy polymers including boron are used as materials for manufacturing products for nuclear power generation waste. In this paper, the surface of boron carbide is treated with iron oxide and tungsten to improve interaction between modified boron carbide and epoxy polymer. XRD and XPS were used to confirm that iron oxide and tungsten are well attached on the surface of boron carbide, respectively. The mechanical strength of the surface treated boron carbide was measured by a universal testing machine (UTM) and the dynamic characteristics of the cured product were observed by using a dynamic analyzer (DMA).