DOI QR코드

DOI QR Code

Spark plasma sintering of UO2 fuel composite with Gd2O3 integral fuel burnable absorber

  • Papynov, E.K. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Shichalin, O.O. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Belov, A.A. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Portnyagin, A.S. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Buravlev, I.Yu (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Mayorov, V.Yu (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Sukhorada, A.E. (Far Eastern Federal University) ;
  • Gridasova, E.A. (Far Eastern Federal University) ;
  • Nomerovskiy, A.D. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Glavinskaya, V.O. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Tananaev, I.G. (Far Eastern Federal University) ;
  • Sergienko, V.I. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
  • Received : 2019.10.18
  • Accepted : 2020.01.30
  • Published : 2020.08.25

Abstract

The paper studies spark plasma sintering (SPS) of industrially used UO2-based fuel containing integral fuel burnable absorber (IFBA) of neutrons Gd2O3. Densification dynamics of pristine UO2 powder and the one added with 2 and 8 wt% of Gd2O3 under ultrasonication in liquid has been studied under SPS conditions at 1050, 1250, and 1450 ℃. Effect of sintering temperature on phase composition as well as on O/U stoichiometry has been investigated for UO2 SPS ceramics. Sintering of uranium dioxide added with Gd2O3 yields solid solution (U,Gd)O2, which is isostructural to UO2. SEM with EDX and metallography were implemented to analyze the microstructure of the obtained UO2 ceramics and composite UO2-Gd2O3 one, particularly, open porosity, defects, and Gd2O3 distribution were studied. Microhardness, compressive strength and density were shown to reduce after addition of Gd2O3. Obtained results prove the hypothesis on formation of stable pores in the system of UO2-Gd2O3 due to Kirkendall effect that reduces sintering efficiency. The paper expands fundamental knowledge on pros and cons of fuel fabrication with IFBA using SPS technology.

Keywords

References

  1. D. Gosset, Absorber materials for Generation IV reactors, in: P. Yvon (Ed.), Struct. Mater. Gener. IV Nucl. React., Elsevier Ltd, NY, 2017, pp. 533-567, https://doi.org/10.1016/B978-0-08-100906-2.00015-X.
  2. M. Lovecky, J. Zavorka, J. Jirickova, R. Skoda, Increasing efficiency of nuclear fuel using burnable absorbers, Prog. Nucl. Energy 118 (2020), https://doi.org/10.1016/j.pnucene.2019.103077.
  3. R.L. Simmons, N.D. Jones, F.D. Popa, D.E. Mueller, J.E. Pritchett, Integral fuel burnable absorbers with ZrB2 in pressurized water reactors, Nucl. Technol. 80 (2017) 343-348, https://doi.org/10.13182/nt88-a34058.
  4. K. Hesketh, Burnable poison-doped fuel, in: R.J.M. Konings (Ed.), Compr. Nucl. Mater., Elsevier, Oxford, 2012, pp. 423-438, https://doi.org/10.1016/B978-0-08-056033-5.00037-9.
  5. M. Asou, J. Porta, Prospects for poisoning reactor cores of the future, Nucl. Eng. Des. 168 (2002) 261-270, https://doi.org/10.1016/s0029-5493(96)01322-2.
  6. M. Hirai, Thermal diffusivity of UO2-Gd2O3 pellets, J. Nucl. Mater. 173 (1990) 247-254. https://doi.org/10.1016/0022-3115(90)90392-Z
  7. K. Iwasaki, T. Matsui, K. Yanai, R. Yuda, Y. Arita, T. Nagasaki, N. Yokoyama, I. Tokura, K. Une, K. Harada, Effect of Gd2O3 dispersion on the thermal conductivity of UO2, J. Nucl. Sci. Technol. 46 (2009) 673-676, https://doi.org/10.1080/18811248.2007.9711574.
  8. K.W. Kang, J.H. Yang, J.H. Kim, Y.W. Rhee, D.J. Kim, K.S. Kim, K.W. Song, The solidus and liquidus temperatures of UO2-Gd2O3 and UO2-Er2O3 fuels, Thermochim. Acta 455 (2007) 134-137, https://doi.org/10.1016/j.tca.2006.11.027.
  9. M.M.F. Lima, W.B. Ferraz, A.M.M. dos Santos, L.C.M. Pinto, A. Santos, Study of UO2-10wt%Gd2O3 fuel pellets obtained by seeding method using AUC coprecipitation and mechanical mixing processes, in: 18 CBECiMat - Congr. Bras. Eng. e Ciencia Dos Mater., 2008, pp. 1224-1242.
  10. M. Durazzo, F.B.V. Oliveira, E.F. Urano De Carvalho, H.G. Riella, Phase studies in the UO2-Gd2O3 system, J. Nucl. Mater. 400 (2010) 183-188, https://doi.org/10.1016/j.jnucmat.2010.03.001.
  11. M. Durazzo, A.M. Saliba-Silva, E.F. Urano De Carvalho, H.G. Riella, Sintering behavior of UO2-Gd2O3 fuel: pore formation mechanism, J. Nucl. Mater. 433 (2013) 334-340, https://doi.org/10.1016/j.jnucmat.2012.09.033.
  12. M. Durazzo, A.M. Saliba-Silva, E.F.U. De Carvalho, H.G. Riella, Remarks on the sintering behavior of UO2-Gd2O3 fuel, J. Nucl. Mater. 405 (2010) 203-205, https://doi.org/10.1016/j.jnucmat.2010.08.002.
  13. M. Durazzo, A.C. Freitas, A.E.S. Sansone, N.A.M. Ferreira, E.F.U. de Carvalho, H.G. Riella, R.M. Leal Neto, Sintering behavior of UO2Er2O3 mixed fuel, J. Nucl. Mater. 510 (2018) 603-612, https://doi.org/10.1016/j.jnucmat.2018.08.051.
  14. R. Yuda, K. Une, Effect of sintering atmosphere on the densification of UO2-Gd2O3 compacts, J. Nucl. Mater. 178 (1991) 195-203, https://doi.org/10.1016/0022-3115(91)90386-L.
  15. M. Durazzo, H.G. Riella, Effect of mixed powder homogeneity on the UO2-Gd2O3 nuclear fuel sintering behavior, in: Key Eng. Mater., 2001, pp. 60-66, https://doi.org/10.4028/www.scientific.net/kem.189-191.60.
  16. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R Rep. 63 (2009) 127-287, https://doi.org/10.1016/j.mser.2008.09.003.
  17. M. Tokita, Spark plasma sintering (SPS) method, systems, and applications, in: S. Somiya (Ed.), Handb. Adv. Ceram. Mater. Appl. Process. Prop., second ed., Elsevier Inc., 2013, pp. 1149-1178, https://doi.org/10.1016/B978-012654640-8/50007-9.
  18. D. Dudina, B. Bokhonov, E. Olevsky, Fabrication of porous materials by spark plasma sintering: a review, Materials (Basel) 12 (2019) 541, https://doi.org/10.3390/ma12030541.
  19. E.P. Simonenko, N.P. Simonenko, E.K. Papynov, O.O. Shichalin, A.V. Golub, V.Y. Mayorov, V.A. Avramenko, V.G. Sevastyanov, N.T. Kuznetsov, Preparation of porous SiC-ceramics by solegel and spark plasma sintering, J. Sol. Gel Sci. Technol. 82 (2017) 748-759, https://doi.org/10.1007/s10971-017-4367-2.
  20. E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, E.B. Modin, A.S. Portnyagin, I.A. Tkachenko, A.A. Belov, E.A. Gridasova, I.G. Tananaev, V.A. Avramenko, Spark Plasma Sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics, Nanotechnol. Russ. 12 (2017) 49-61, https://doi.org/10.1134/S1995078017010086.
  21. L. Ge, G. Subhash, R.H. Baney, J.S. Tulenko, E. McKenna, Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS), J. Nucl. Mater. 435 (2013) 1-9, https://doi.org/10.1016/j.jnucmat.2012.12.010.
  22. M. Cologna, V. Tyrpekl, M. Ernstberger, S. Stohr, J. Somers, Sub-micrometre grained UO2 pellets consolidated from sol gel beads using spark plasma sintering (SPS), Ceram. Int. 42 (2016) 6619-6623, https://doi.org/10.1016/j.ceramint.2015.12.172.
  23. T. Yao, S.M. Scott, G. Xin, B. Gong, J. Lian, Dense nanocrystalline UO2+ x fuel pellets synthesized by high pressure spark plasma sintering, J. Am. Ceram. Soc. (2017) 1-11, https://doi.org/10.1111/jace.15289.
  24. Z. Chen, G. Subhash, J.S. Tulenko, Master sintering curves for UO2 and UO2-SiC composite processed by spark plasma sintering, J. Nucl. Mater. 454 (2014) 427-433, https://doi.org/10.1016/j.jnucmat.2014.08.023.
  25. B. Gong, T. Yao, C. Lu, P. Xu, E. Lahoda, J. Lian, Consolidation of commercialsize UO2 fuel pellets using spark plasma sintering and microstructure/microchemical analysis, MRS Commun. (2018) 1-9, https://doi.org/10.1557/mrc.2018.121.
  26. E.K. Papynov, O.O. Shichalin, A.Y. Mironenko, A. V Ryakov, I. V Manakov, P. V Makhrov, I.Y. Buravlev, I.G. Tananaev, V.A. Avramenko, V.I. Sergienko, Synthesis of high-density pellets of uranium dioxide by spark plasma sintering in dies of different types, Radiochemistry 60 (2018) 362-370, https://doi.org/10.1134/S1066362218040045.
  27. M. Pijolat, C. Brun, F. Valdivieso, M. Soustelle, Reduction of uranium oxide U3O8 to UO2 by hydrogen, Solid State Ionics 101-103 (1997) 931-935, https://doi.org/10.1016/S0167-2738(97)00385-8.
  28. A.V. Fedotov, E.N. Mikheev, A.V. Lysikov, V.V. Novikov, Theoretical and experimental density of (U, Gd)O2and (U, Er)O2, At. Energy 113 (2013) 429-434, https://doi.org/10.1007/s10512-013-9657-3.
  29. R. Manzel, W.O. Doerr, Manufacturing and irradiation experience with UO2/Gd2O3 fuel, Am. Ceram. Soc. Bull. 59 (1980) 1980. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002067108164492&rel=0.
  30. K.W. Song, K. Sik Kim, J. Ho Yang, K. Won Kang, Y. Ho Jung, Mechanism for the sintered density decrease of UO2-Gd2O3 pellets under an oxidizing atmosphere, J. Nucl. Mater. 288 (2001) 92-99, https://doi.org/10.1016/S0022-3115(00)00721-2.
  31. V. Tyrpekl, M. Naji, M. Holzh€auser, D. Freis, D. Prieur, P. Martin, B. Cremer, M. Murray-Farthing, M. Cologna, On the role of the electrical field in spark plasma sintering of UO2+x, Sci. Rep. 7 (2017) 1-9, https://doi.org/10.1038/srep46625.
  32. A. Baena, T. Cardinaels, K. Govers, J. Pakarinen, K. Binnemans, M. Verwerft, Lattice contraction and lattice deformation of UO2 and ThO2 doped with Gd2O3, J. Nucl. Mater. 467 (2015) 135-143, https://doi.org/10.1016/j.jnucmat.2015.09.018.
  33. S.M. Ho, K.C. Radford, Structural Chemistry of solid solutions in the UO2-Gd2O3 system, Nucl. Technol. 73 (1986) 350-360, https://doi.org/10.13182/nt86-a16077.
  34. T. Cardinaels, J. Hertog, B. Vos, L. De Tollenaere, C. Delafoy, M. Verwerft, Dopant solubility and lattice contraction in gadolinia and gadolinia-chromia doped UO2 fuels, J. Nucl. Mater. 424 (2012) 289-300, https://doi.org/10.1016/j.jnucmat.2012.02.014.
  35. R.M. German, Sintering Theory and Practice, John Willey & Sons, New York, 1996.
  36. International Atomic Energy Agency, Experiences and Trends of Manufacturing Technology of Advanced Nuclear Fuel, IAEA-TECDO, IAEA, Vienna, 2012.

Cited by

  1. Crystalline phosphates for HLW immobilization - composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology vol.559, 2020, https://doi.org/10.1016/j.jnucmat.2021.153407