• Title/Summary/Keyword: Neutralizing contribution

Search Result 12, Processing Time 0.023 seconds

동북아시아 지역 강수의 화학적 성분 비교에 관한 연구

  • 김선태;임봉빈
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.523-530
    • /
    • 1998
  • Precipitation samples were collected at sixteen sites in Northeast Asia from June 1995 to February 1997, and were analysed for the anions $SO_4^{2-}$, $NO_3^-$and $Cl^-$ and for the cartons $Na^+, NH_4^+, K^+, Mg^{2+} and $Ca^{2+}$in addition to pH and conductivity measurements. The quality assurance of chemical composition data was checked by considering the ion balance evaluating by 1 h 1 value and the conductilfty balance. The sum of cation concentrations were slightty greater than the sum of anion concentraions. For the anions, $SO_4^{2-}$ clearly dominates in most of sampling states whereas $Cl^-$ is more abundant in coast and rural sites In. Tapan. For the cations. $Ca^{2+}$ and $NH_4^+$ are generally the more abundant tons except when sources of Na+ exist. The contribution rate of nss-$SO_4^2-and NO_3^-$ to acidity are about 70% and 10-30%. respectively. The neutralizing capacity by a major neutralizing cations such as $NH_4^+$ and nuts -$SO_4^2$. are above 98%(heavy polluted and urban sites in China), above 70%(urban sites in Japi,n and in Korea, coast sites In Chinas and above 60%(rural sites in Japan and in Korea), respectively.

  • PDF

Chemical Characteristics of Precipitation in Pusan I. Temporal and spatial variation of pH and major ions (부산지역 강우의 화학적 특성 I. pH 및 주요이온의 시ㆍ공간적 변화)

  • Jeon, Eun-Ju;Yang, Han-Sub;Ok, Gon;Kim, Young-Sub
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.707-716
    • /
    • 1998
  • The chemical characteristics of precipitation was investigated in Pusan area. Samples were collected from January to November in 1996 at 4 sites, and analyzed pH, major soluble ionic components(C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, N $a^{+}$, $K^{+}$, N $H_4$$^{+}$, $Mg^{2+}$, $Ca^{2+}$). The order of anion and cation concentrations for the initial precipitation were C $l^{[-10]}$ > S $O_4$$^{2-}$ > N $O_3$$^{[-10]}$ , and $Ca^{2+}$ > N $a^{+}$ > N $H_4$$^{+}$$Mg^{2+}$$K^{+}$, respectively. At coastal sites(P1 and P2) C $l^{[-10]}$ and N $a^{+}$ of maritime sources (seasalt) were high, but at inland sites(P3 and P4) nss-C $a^{2+}$ and nss-S $O_4$$^{2-}$ were high. Calcium ion for the initial precipitation showed high value of enrichement factor(EF) relative to seawater composition. The contribution of seasalt to the composition of precipitation was higher at bite P1 (53.5%) than those of the other sites. Throughout the year the concentrations of major ions for the initial precipitation were low in the heavy rain season. The mean pH for the initial precipitation was 5.4 and showed the negative relationship with the precipitaion amount. The S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ do not play an important role in rain acidification due to the high(97%) neutralizing effect of amonia and calcium species.and calcium species.

  • PDF

Acidification and Neutralization Characteristics of Atmospheric Fine Particles at Gosan Site of Jeju Island in 2008 (제주도 고산지역 대기 미세입자의 산성화 및 중화 특성: 2008년 측정 결과)

  • Lee, Dong-Eun;Kim, Won-Hyung;Jo, Eun-Kyung;Han, Jong-Heon;Kang, Chang-Hee;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.603-613
    • /
    • 2011
  • The collection of $PM_{10}$ and $PM_{2.5}$ samples was made at Gosan site of Jeju Island. Their ionic compositions of both inorganic and organic phases were then analyzed to examine their acidification and neutralization characteristics in atmospheric aerosols. The mass concentrations of $PM_{10}$ and $PM_{2.5}$ at Gosan site were $37.6{\pm}20.1$ and $22.9{\pm}14.3{\mu}g/m^3$, respectively, showing the content ratio of $PM_{2.5}$ to $PM_{10}$ as 61.0%. In the evaluation of ionic balance, the correlation coefficients (r) between the sums of cationic and anionic equivalent concentrations were excellent with 0.982 ($PM_{10}$) and 0.991 ($PM_{2.5}$). The concentration ratios of $PM_{2.5}/PM_{10}$ derived for nss-$SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ were 0.94, 0.56, and 1.02, respectively, indicating the relative dominance of fine fractions. The acidifying capacity of inorganic anions ($SO_4^{2-}$ and $NO_3^-$) in $PM_{10}$ and $PM_{2.5}$ were 96.5% and 97.3%, while those of organic anions ($HCOO^-$ and $CH_3COO^-$) in each fraction were 2.9% and 2.0%, respectively. On the other hand, the neutralizing capacity of $PM_{10}$ and $PM_{2.5}$ by $NH_3$ were 72.8% and 82.3%, while their $CaCO_3$ counter parts were 22.5% and 13.3%, respectively.

Snow Influence on the Chemical Characteristics of Winter Precipitation (강설이 겨울철 강수의 화학적 특성에 미치는 영향)

  • Kang, Gong-Unn;Kim, Nam-Song;Oh, Gyung-Jae;Shin, Dae-Yewn;Yu, Du-Cheol;Kim, Sang-Baek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.113-125
    • /
    • 2007
  • To know the differences in ionic compositions in rain and snow as well as snow influence on the chemical characteristics of winter precipitation, precipitation samples were collected by the wet-only automatic precipitation sample, in winter(November-February) in the Iksan located in the northwest of Chonbuk from 1995 to 2000. The samples were analyzed for concentrations of water-soluble ion species, in addition to pH and electrical conductivity. The mean pH of winter precipitation was 4.72. According to the type of winter precipitation, the mean pH of rain was 4.67 and lower than 5.05 in snow. The frequencies of pH below 5.0 in rain were about 73%, while those in snow were about 30%. Snow contained 3 times higher concentrations of sea salt ion components originated from seawater than did rain in winter, mainly $Cl^-,\;Na^+$, and $Mg^{2+}$. Neglecting sea salt ion components, $nss-SO_4^{2-}$ and $NO_3^-$ were important anions and $NH_4^+$ and $nss-Ca^{2+}$ were important cations in both of rain and snow. Concentrations of $nss-SO_4^{2-}$ was 1.3 times higher in rain than in snow, while those of $nss-Ca^{2+}$ and $NO_3^-$ were 1.5 and 1.3 times higher in snow, respectively. The mean equivalent concentration ratio of $nss-SO_4^{2-}/NO_3^-$ in winter precipitation were 2.4, which implied that the relative contribution of sulfuric and nitric acids to the precipitation acidity was 71% and 29%, respectively. The ratio in rain was 2.7 and higher than 1.5 in snow. These results suggest that the difference of $NO_3^-$ in rain and snow could be due to the more effective scavenging of $HNO_3$ vapor than particulate sulfate or nitrate by snow. The lower ratio in snow than rain is consistent with the measurement results of foreign other investigators and with scavenging theory of atmospheric aerosols. Although substantial $nss-SO_4^{2-}$ and $NO_3^-$ were observed in both of rain and snow, the corresponding presence of $NH_4^+,\;nss-Ca^{2+},\;nss-K^+$ suggested the significant neutralization of rain and snow. Differences in chemical composition of non-sea salt ions and neutralizing rapacity of $NH_4^+,\;nss-Ca^{2+}$, and $nss-K^+$ between rain and snow could explain the acidity difference of rain and snow. Snow affected that winter precipitation could be less acidic due to its higher neutralizing rapacity.

A Study on the Comparison of Chemical Components in Rainwater at Coastal and Metropolitan areas (해안지역과 도시지역 강수의 화학적 성상에 관한 연구)

  • 강공언;강병욱;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.191-197
    • /
    • 1992
  • In order to investigate the chemical components of acid precipitation at Kangwha near the Yellow Sea and Seoul in Korea, the precipitation samples were collected by wetonly precipitation sampler from February 1991 to January 1992, and pH, electric conductivity(E. C.) and major water-soluble ionic components were analyzed. Strong negative linear correlations were observed between the rainfall amount and the sum of major ionic components in $\mu eq/\ell$ at two sites. The sum of major ionic components also correlated negatively with rain intensity. The analytical results of precipitation samples at two sites were compared each other. Average values of volume-weighted pH were found to be 5.21 at Kangwha and 5.09 at Seoul. The cationic abundance($\mu eq/\ell$) in rainwater showed the general trend $NH_4^+ > Na^+ > Ca^{2+} > Mg^{2-+} > H^+ > K^+$ at Kangwah and $NH_4^+ > Ca^{2+} > Na^+ > H^+ > Mg^{2+} > K^+$ at Seoul. The anionic abundance showed the general trend $SO_4^{2-} > Cl^- > NO_3^-$ at Kangwha and $SO_4^{2-} > NO_3^- > Cl^-$ at Seoul. The concentrations of seasalt such as $Na^+ and Cl^-$ were higher at Kangwha than Seoul. The concentrations of $nss-SO_4^{2-}, nss-Cl^- and NO_3^-$ which are acid composition were higher at Seoul(96.3 $\mu eq/\ell$) than Kangwha(69.0 $\mu eq/\ell$). The contribution of seasalt to the composition of precipitation were higher at Kangwha(34.1%) than Seoul(15.7%). Ammonia and calcium species in rainwater at Kangwha and Seoul are interpreted to have 91% of neutralizing capacity of the original sulfuric and nitric acids. Provided that the precipitation acidity originates primarily from sulfate and nitrate, sulfate was found to contribute about 73-75% of the free precipitation acidity.

  • PDF

Searching the Natural Tracers for Separation of Runoff Components in a Small Forested Catchment (산림소유역에서 주요 유출성분 분석을 위한 천연추적자의 탐색)

  • Yoo, Jaeyun;Kim, Kyongha;Jun, Jaehong;Choi, Hyungtae;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.4
    • /
    • pp.52-59
    • /
    • 2006
  • This study was conducted to find end-members and tracers which are effective to be applied in the End Member Mixing Analysis (EMMA) model for runoff separation at the Gwangneung coniferous forest catchment (13.6ha), Gyeonggido, Korea. We monitored three successive rainfall events during two weeks from June 26, 2005 to July 10, 2005, and analysed chemical properties of rainfall, throughfall, stemflow, groundwater and soil water considered as main components of storm runoff. The followings are the results of analyses of each component and tracer. Groundwater, soil water and rainfall (or throughfall) were dominant runoff components. Rainfall and groundwater were selected as main components for the two components-one tracer mixing model, and groundwater, soilwater and throughfall were selected as main components for the three components-two tracers mixing model. Tracers were selected from anion ($Cl^-$ and ${SO_4}^{2-}$), cation ($Na^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$) and Acid Neutralizing Capacity (ANC) in event 1, 2, and 3. $Na^+$, $Ca^{2+}$ and ANC were selected in the two components-one tracer mixing model and ${SO_4}^{2-}-K^+$, ${SO_4}^{2-}-Na^+$, ${SO_4}^{2-}-Ca^{2+}$, ${SO_4}^{2-}$-ANC, and $Ca^{2+}$-ANC were selected in the three components-two tracers mixing model. Selected main runoff components and tracers can provide basic information to determine the contribution rate of each runoff component and identify the runoff process in a forest watershed.

Study on the Yellow Sandy Dust Phenomena in Korean Peninsula and Chemical Compositions in Fine Particles at Background Sites of Korea. (한반도의 황사 관측현황 및 배경지역 미세먼지의 화학적 조성에 관한 연구)

  • Baek Kwang-Wook;Chung Jin-Do
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.9-18
    • /
    • 2004
  • In this study, the observation data for the yellow sandy dust phenomena from the year 1999 to 2003 at background sites in Korea were collected at Global Atmospheric Observatory at An-Myeon island and its temporal variation were analyzed. The chemical characteristics of the fine particles were also analyzed in order to evaluate sources of the yellow sandy dust particles. The results showed that the monthly average mass concentration of the fine particles was the highest in springtime and the lowest in summertime in general. The magnitude of its variation was also the highest in March in which the occurrence of yellow sandy dust was the most frequent and thus the number of samples was the largest, while the lowest in June through September. The yearly variation of ion components contributions to the total mass concentration of the fine particles was slowly decreasing, showing that $63\%$ in 1999, $59\%$ in 2000 and $56\%$ in 2003. The most prevalent ion components in the fine particles were found to be $NO_3$ and $SO_4^{2-}$, which are known to be source materials of acidic precipitation, and $NH_4^+$, a neutralizing material of the acid precipitation. Relative proportion of metal components in the fine particles was calculated as $14\%$ in average, and their concentrations are in an order of Fe > Al > Na > Ca > Zn > Pb > Cu > Mn > Ni > Cd > Cr > Co > U. The results indicated that main sources of the metals was soil-originated Fe, Al, Ca, and Mg, and the contribution of anthropogenic air Pollution-originated Zn, Pb, Cu, Mn were also high and keep slightly increasing. Statistical analysis showed that the chemical components could be divided into soil-originated group of Mg, Al, Ca, Fe, and Mn and air pollution-originated group of $NO_3$, Zn, Pb, and they are occupying more than $60\%$of all the components in the dusty sand. The results explain that An-Myeon island is more influenced by soil-originated source than ocean-originated one and also the influencing strength of anthropogenic poilution-originated source is less than $50\%$ of that of soil-originated sources. Compared to non-yellow sandy period, the yellow sandy dust period showed that the amounts of soil-originated $Mg^{2+}$ and $Ca^{2+}$ and ocean-originated $Na^+$ and $Cl^-$ were increased to more than double and the metals of Mg, Al, Ca, Fe were also highly increased, while micro metal components such as Pb, Cd, Zn, which have a tendency of concentrating in air, were either decreased or maintained at nearly constant level. In the period of yellow sandy dust, a strong positive correlation was observed between water soluble ions and between metals in terms of its concentration, respectively. Factor analysis showed that the first group being comprised of about $43\%$ of the total inorganic components was affected by soil and they are ions of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ and metals of Na, Fe, Mn and Ni. The result also showed that the metals of Mg and Cr were classified as second group and they were also highly affected by soil sources.

Characteristics of Ionic Composition of Rainwater in Taean (태안지역 강우의 이온 조성)

  • Lee, Jong-Sik;Kim, Gun-Yeob;Lee, Jeong-Taek;Lee, Kwan-Yong;Park, Byoung-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • The issue of acid precipitation and related environmental problems in East Asia has been emerging. To evaluate the acidity and chemical characteristics of rainwater in Korea, its chemical properties during cultivation season from April to October in 2005 were investigated at Taean. Also, to estimate the contribution of ions on acidity, ion composition characteristics and neutralization effects by cations were determined. The electrical conductivity balance between measured and estimated values showed a high correlation. Rainwater was highly distributed in the range of pH $4.5{\sim}5.0$. The acidity of rainwater was relatively low during the month of June compared with other monitored periods. $Na^+$ was the main cation, followed by $H^+>Ca^{2+}>NH_4^+>K^+>Mg^{2+}$. Among these ions, $Na^+,\;NH_4^+,\;Ca^{2+}$ and $H^+$ comprised over 94% of the total cations. Rainwater anion composition was more than 80% with $SO_4^{2-}$ and $NO_3^-$. In rainwater samples, $NH_4^+$ and $Ca^{2+}$ contributed greatly to neutralizing the rain acidity. The sulfate content decreased until September, and sea salt derivatives were higher in May and October than during other monitored periods. Also, 78% of the soluble sulfate in rainwater was nss-$SO_4^{2-}$ (non-sea salt sulfate).

The In Vitro and In Vivo Effect of Lipoxygenase Pathway Inhibitors Nordihydroguaiaretic Acid and Its Derivative Tetra-O-methyl Nordihydroguaiaretic Acid against Brucella abortus 544

  • Reyes, Alisha Wehdnesday Bernardo;Kim, Heejin;Huy, Tran Xuan Ngoc;Nguyen, Trang Thi;Min, Wongi;Lee, Dongho;Hur, Jin;Lee, John Hwa;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1126-1133
    • /
    • 2022
  • This study investigated the contribution of lipoxygenase (LOX) inhibitors, nordihydroguaiaretic acid (NDGA), tetra-O-methyl nordihydroguaiaretic acid (M4N) and zileuton (ZIL), and thromboxane A2 (TXA2) inhibitor 4,5-diphenylimidazole (DPI) in the proliferation of Brucella abortus infection. None of the compounds affected the uptake of Brucella into the macrophages. We determined the effect of neutralizing leukotriene B4 (LTB4) receptor and showed that the uptake of the bacteria was inhibited at 30 min post-infection. M4N treatment attenuated intracellular survival of Brucella at 2 h post-incubation but it was not observed in the succeeding time points. DPI treatment showed reduced survival of Brucella at 24 h post-incubation while blocking LTB4 receptor was observed to have a lower intracellular growth at 48 h post-incubation suggesting different action of the inhibitors in the course of the survival of Brucella within the cells. Reduced proliferation of the bacteria in the spleens of mice was observed in animals treated with ZIL or DPI. Increased serum cytokine level of TNF-α and MCP-1 was observed in mice treated with M4N or ZIL while a lower IFN-γ level in ZIL-treated mice and a higher IL-12 serum level in DPI-treated mice were observed at 7 d post-infection. At 14 d post-infection, ZIL-treated mice displayed reduced serum level of IL-12 and IL-10. Overall, inhibition of 5-LOX or TXA2 or a combination therapy promises a potential alternative therapy against B. abortus infection. Furthermore, strong ligands for LTB4 receptor could also be a good candidate for the control of Brucella infection.

Chemical Properties and Nutrient Loadings of Rainwater during Farming Season (영농기 강우의 화학적 특성 및 부하량 평가)

  • Ko, Byong-Gu;Kim, Min-Kyeong;Lee, Jong-Sik;Kim, Gun-Yeob;Park, Seong-Jin;Kwon, Soon-Ik;Jung, Goo-Buk;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.578-583
    • /
    • 2010
  • Acid rain and its problem to environment such as acid precipitation and environmental problems related to the air pollution in East Asia has been emerging. To evaluate the acidity and chemical characteristics of rainwater precipitated in western Korea, Suwon and Taean, its pH and ion concentrations were investigated during farming season (April to November) in 2009. Also, ion composition and cation-affected neutralization were determined to evaluate the contribution of cations on the acidity of rainwater. Ion and electrical conductivity between the measured and the estimated showed high correlation. The $Na^+$ in rainwater was the main cation followed by ${NH_4}^+>Ca^{2+}>H^+>Mg^{2+}>K^+$. Sum of $Na^+$ and ${NH_4}^+$ contents was over 65% of total cations contents. In the case of anions, the concentration was in order of ${SO_4}^{2-}>{NO_3}^->Cl^-$. The ${SO_4}^{2-}$ among anions in rainwater composed about 61%, which showed on average 130.2 ${\mu}eq\;L^{-1}$ and 121.3 ${\mu}eq\;L^{-1}$ during monitoring at Suwon and Taean, respectively. Also, 89.6 and 88.6% of soluble sulfate in rainwater at Suwon and Taean area was NSS-${SO_4}^{2-}$ (Non-Sea Salt sulfate). Especially, ${NH_4}^+$ and $Ca^{2+}$ contributed greatly in neutralizing the acid rain in dry season. Total nitrogen content flowed into soil from rain was around 1~2 kg $ha^{-1}$ in each month, but in July at Suwon, it reached 6 kg $ha^{-1}$ due to heavy rain (over 7.3 mm).