• 제목/요약/키워드: Neutral point voltage balance

검색결과 25건 처리시간 0.018초

A Neutral-Point Voltage Balance Controller for the Equivalent SVPWM Strategy of NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2109-2118
    • /
    • 2016
  • Based on the space vector pulse width modulation (SVPWM) theory, this paper realizes an easier SVPWM strategy, which is equivalently implemented by CBSPWM with zero-sequence voltage injection. The traditional SVPWM strategy has no effect on controlling the neutral-point voltage balance. In order to solve the neutral-point voltage unbalance problem for neutral-point-clamped (NPC) three-level inverters, this paper proposes a neutral-point voltage balance controller. The proposed controller realizes controlling the neutral-point voltage balance by dynamically calculating the offset superimposed to the three-phase modulation waves of an equivalent SVPWM strategy. Compared with the traditional SVPWM strategy, the proposed neutral-point voltage balance controller has a strong ability to balance the neutral-point voltage, has good steady-state performance, improves the output waveforms quality and is easy for digital implementation. An experiment has been carried out on a NPC three-level inverter prototype based on a digital signal processor-complex programmable logic device (DSP-CPLD). The obtained experimental results verify the effectiveness of the proposed neutral-point voltage balance controller.

Research on Carried-Based PWM with Zero-Sequence Component Injection for Vienna Type Rectifiers

  • Ma, Hui;Feng, Mao;Tian, Yu;Chen, Xi
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.560-568
    • /
    • 2019
  • This paper studies the inherent relationship between currents and zero-sequence components. Then a precise algorithm is proposed to calculate the injected zero-sequence component to control the DC-Link neutral-point voltage balance, which can result in a more efficient and flexible neutral point voltage balance with a desirable performance. In addition, it is shown that carried-based PWM with the calculated zero-sequence component scheme can be equivalent to space-vector pulse-width modulation (SVPWM). Based on the proposed method, the optimal zero-sequence component of the feasible modulation indices is analyzed. In addition, the unbalanced load limitation of the DC-Link neutral-point voltage balance control is also revealed. Simulation and experimental results are shown to verify the validity and practicality of the proposed algorithm.

Active Voltage-balancing Control Methods for the Floating Capacitors and DC-link Capacitors of Five-level Active Neutral-Point-Clamped Converter

  • Li, Junjie;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.653-663
    • /
    • 2017
  • Multilevel active neutral-point-clamped (ANPC) converter combines the advantages of three-level ANPC converter and multilevel flying capacitor (FC) converter. However, multilevel ANPC converter often suffers from capacitor voltage balancing problems. In order to solve the capacitor voltage balancing problems for five-level ANPC converter, phase-shifted pulse width modulation (PS-PWM) is used, which generally provides natural voltage balancing ability. However, the natural voltage balancing ability depends on the load conditions and converter parameters. In order to eliminate voltage deviations under steady-state and dynamic conditions, the active voltage-balancing control (AVBC) methods of floating capacitors and dc-link capacitors based on PS-PWM are proposed. First, the neutral-point current is regulated to balance the neutral-point voltage by injecting zero-sequence voltage. After that, the duty cycles of the redundant switch combinations are adjusted to balance the floating-capacitor voltages by introducing moderating variables for each of the phases. Finally, the effectiveness of the proposed AVBC methods is verified by experimental results.

DC-Link Capacitor Voltage Balanced Modulation Strategy Based on Three-Level Neutral-Point-Clamped Cascaded Rectifiers

  • Han, Pengcheng;He, Xiaoqiong;Zhao, Zhiqin;Yu, Haolun;Wang, Yi;Peng, Xu;Shu, Zeliang
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.99-107
    • /
    • 2019
  • This study proposes a new modulation strategy to deal with unbalanced output voltage that is based on three-level neutral-point-clamped cascaded rectifiers. The fundament idea is to reallocate the value of the voltage levels generated by each of the modules on the basis of space vector pulse width modulation. This proposed modulation strategy can reduce the switching frequency while maintaining the mutual-module voltage balance. First, an analysis of unbalanced output voltage is reflected. Then a new modulation strategy is introduced in detail. Internal module capacitor voltages are balanced by the selection of redundant vectors. Moreover, the voltage balance ability is calculated. Finally, the feasibility of this modulation strategy is verified through experimental results.

Theoretical Analysis and Control of DC Neutral-point Voltage Balance of Three-level Inverters in Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.344-356
    • /
    • 2012
  • In recent years, multilevel technology has become an effective and practical solution in the field of moderate and high voltage applications. This paper discusses an APF with a three-level NPC inverter. Obviously, the application of such converter to APFs is hindered by the problem of the voltage unbalance of DC capacitors, which leads to system instability. This paper comprehensively analyzes the theoretical limitations of the neutral-point voltage balancing problem for tracking different harmonic currents utilizing current switching functions from the space vector PWM (SVPWM) point of view. The fluctuation of the neutral point caused by the load currents of certain order harmonic frequency is reported and quantified. Furthermore, this paper presents a close-loop digital control algorithm of the DC voltage for this APF. A PI controller regulates the DC voltage in the outer-loop controller. In the current-loop controller, this paper proposes a simple neutral-point voltage control method. The neutral-point voltage imbalance is restrained by selecting small vectors that will move the neutral-point voltage in the direction opposite the direction of the unbalance. The experiment results illustrate that the performance of the proposed approach is satisfactory.

3-레벨 ANPC 인버터의 고장 허용 운전 시 중성점 전압 균형 제어 기법 (Neutral-Point Voltage Balancing Control Scheme for Fault-Tolerant Operation of 3-Level ANPC Inverter)

  • 이재운;김지원;박병건;노의철
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.120-126
    • /
    • 2019
  • This study proposes a neutral voltage balance control scheme for stable fault-tolerant operation of an active neutral point clamped (ANPC) inverter using carrier-based pulse width modulation. The proposed scheme maintains the neutral voltage balance by reconfiguring the switching combination and modulating the reference output voltage in order to solve the degradation of the output characteristic in the fault tolerant operation due to the fault of the power semiconductor switch constituting the ANPC inverter. The feasibility of the proposed control scheme is confirmed by HIL experiment using RT-BOX.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverter at Low Modulation Index

  • C.S. Ma;Kim, T.J.;D.W. Kang;D.S. Hyun
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.205-214
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM (DPWM) to balance the DC-link voltage of three-level neutral-point-clamped (NPC) inverter at low modulation index. It introduces new DPWM methods in multi-level inverter and one of them is used for balancing the DC-link voltage. The current flowing in the neutral point of the DC-link causes the fluctuation of the DC-link voltage of the NPC inverter. The proposed DPWM method changes the path and duration time of the neutral point current, which makes the overall fluctuation of the DC-link voltage zero during a sampling time of the reference voltage vector. Therefore, by using the proposed strategy, the voltage of the DC-link can be balanced fairly well and the voltage ripple of the DC-link is also reduced significantly. Moreover, comparing with conventional methods which have to perform the complicated calculation, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by the experiment.

Neutral-point Voltage Balancing Strategy for Three-level Converter based on Disassembly of Zero Level

  • Wang, Chenchen;Li, Zhitong;Xin, Hongliang
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.79-88
    • /
    • 2019
  • The neutral-point (NP) voltage of three-phase three-level NP-clamped converters is needed for balance. To maintain NP potential and suppress ripple, a novel NP voltage balancing strategy is proposed in this work. The mechanism of NP voltage variation is studied first. Then, the relationship between the disassembly of zero level (O level) and NP current is studied comprehensively. On these bases, two methods for selecting one of three output phases for the disassembly of its O level are presented. Finally, simulation and experimental results verify the validity and practicability of the proposed algorithms.

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

Neutral-Point-Clamped 인버터의 저 변조지수에서 DC 링크 전압 균형을 위한 간단한 컨트롤 기법 (A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverters at low modulation index)

  • 마창수;김태진;강대욱;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.560-564
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM(DPWM) to balance the DC-link voltage of three-level Neutral-Point-Clamped(WPC) inverters at low modulation index. New DPWM methods in multi-level inverter are also introduced. The proposed DPWM method changes the path and duration to flow the neutral point current out of or into neutral point of the DC-link and it makes the overall fluctuation of the DC-link voltage zero during a sampling time of reference voltage vector. Therefore, the voltage of the DC-link can be balanced fairly well and also the voltage ripple of the DC-link is reduced significantly. Moreover, comparing with conventional methods, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by experiment

  • PDF