• Title/Summary/Keyword: Neutral Current

Search Result 485, Processing Time 0.032 seconds

Analysis and Control of Neutral Point Current Deviation in Grid Tied 3-Level NPC Converter under Various Grid Unbalanced Conditions (다양한 불평형 계통 상황에서 계통 연계형 3-레벨 NPC 컨버터의 중성점 전류 변동에 대한 해석 및 제어)

  • Choi, Jaehoon;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.385-393
    • /
    • 2020
  • This study introduces an analysis and control method for the variation of neutral point current in a grid-tied three-level neutral point clamped (NPC) converter under various grid imbalance operating conditions. Various fault cases with unbalanced amplitude and phase are systematically categorized and described using a unified metric called the imbalance factor. The fundamental component of neutral point current is generated under grid imbalance cases. The pattern and behavior of this fundamental component of neutral point current highly depend on the imbalance factor regardless of the particular type of grid fault cases. The control scheme for regulating the negative sequential component of AC input current effectively reduces the size of the fundamental component of neutral point current under a wide range of grid imbalance cases. The control scheme will enable a grid-tied three-level NPC converter to operate reliably and stably under various types of grid faults.

Design and Implementation of Solar PV for Power Quality Enhancement in Three-Phase Four-Wire Distribution System

  • Guna Sekar, T.;Anita, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • This paper presents a new technique for enhancing power quality by reducing harmonics in the neutral conductor. Three-Phase Four-Wire (3P4W) system is commonly used where single and three phase loads are connected to Point of Common Coupling (PCC). Due to unbalance loads, the 3P4W distribution system becomes unbalance and current flows in the neutral conductor. If loads are non-linear, then the harmonic content of current will flow in neutral conductor. The neutral current that may flow towards transformer neutral point is compensated by using a series active filter. In order to reduce the harmonic content, the series active filter is connected in series with the neutral conductor by which neutral and phase current harmonics are reduced significantly. In this paper, solar PV based inverter circuit is proposed for compensating neutral current harmonics. The simulation is carried out in MATLAB/SIMULINK and also an experimental setup is developed to verify the effectiveness of the proposed method.

Analysis of Average Neutral Point Current in 3-level NPC Converter under Generalized Unbalanced AC Input Condition

  • Jung, Kyungsub;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.151-152
    • /
    • 2016
  • This paper presents a neutral point deviation compensating control algorithm applied to a 3-level NPC converter under generalized unbalanced ac input conditions. The neutral point deviation is analyzed with a focus on the current flowing out of or into the neutral point of the dc-link in 3-level NPC converter. The model of neutral point deviation and neutral current are also constructed. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converter and its impact on neutral point deviation. This paper includes the harmonic characteristic of neutral point current under various imbalance AC operating conditions.

  • PDF

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

Compensation of Neutral Point Deviation under Generalized 3-Phase Imbalance in 3-level NPC

  • Jung, Kyungsub;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1866-1878
    • /
    • 2018
  • This paper presents a neutral point deviation and ripple compensation control method for application to 3-level NPC converters. The neutral point deviation and its harmonic components are analyzed with a focus on the average current flowing through the neutral point of the dc-link. This paper also proposes a control scheme to compensate for the neutral point deviation and dominant harmonic components under generalized unbalanced grid operating conditions. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converters. Simulation and experimental results are presented to verify the validity of the proposed method.

A Study on the Ground Fault Current Distribution by Single Phase-to-Neutral Fault Tests in Power Distribution System (배전계통에서 1선 지락고장 시험에 의한 지락고장전류 분류에 관한 연구)

  • Kim, Kyung-Chul;You, Chang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.37-44
    • /
    • 2013
  • Phase to ground faults are possibly one of the maximum number of faults in power distribution system. During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multigrounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A simplified equivalent circuit model for the distribution system under case study calculated by using MATLAB gives results very close to the ground fault current distribution yielded by field tests.

The analysis of power quality characteristics in high speed train through neutral section of catenary system (절연구간운행 고속철도차량 전력품질 특성 분석)

  • Hong, Hyun-Pyo;Choi, Eui-Seong;Lee, See-Bin;Lee, Hee-Soon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.634-643
    • /
    • 2011
  • The neutral section was installed in order to prevent conflict with different phase angle source in electric railway catenary system. The speed of electric train reduced due to coasting operation by notch off when it passed the neutral section. And, the catenary wire was damaged and the accident might be happened because of the arc generation when the electric train passed the neutral section with notch off condition. The inrush current of main transformer installed tiling train is analyzed during the operation of MCB(main circuit break) passing through the neutral section. The instantaneous waveform of load current were analyzed in case of powering and regenerative braking. Inrush current waveform with run of AC railway train showed that inrush current waveform and harmonics, the inrush current generated from main transformer in train has bad effects on power quality problem. In order to reduce these inrush currents, the MCB is connected when the phase angle of voltage is 90 degree. This paper is to measure inrush current and harmonics in main transformer of high speed train in neutral section of electric railway. This measurement report is used to control minimum inrush current in algorithm and power phase angle.

  • PDF

A SVPWM for the Small Fluctuation of Neutral Point Current in Three-level Inverter (중성점 전류 리플을 고려한 3-레벨 인버터의 공간 벡터 펄스폭 변조 기법)

  • 김래영;이요한;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.33-37
    • /
    • 1998
  • For the high power variable speed applications, the DCTLI(diode clamped three-level inverter) have been widely used. This paper describes the analysis of the neutral point current of the DCTLI and the improved space vector-based PWM strategy considering the switching frequency of power devices, that minimizes the fluctuation of the neutral point current in spite of high modulation index region and low power factor. It contributes to decrease the capacitance of dc-link capacitor bank and to increase the neutral point voltage controllable region. Especially, even if second (or even) order harmonic is induced in load current (at this situation, is was investigated that the general control method can not suppress the neutral point voltage variation), this PWM can provide effective control method to suppress the neutral point voltage variation. Various simulation results by means of Matlab/Simulation are presented to verify the proposed PWM.

  • PDF

Analysis on Reduction Method of Symmetrical Fault Current in a Power System with a SFCL applied into Neutral Line (전력계통의 중성선에 적용된 초전도한류기의 대칭고장전류 저감방안 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.148-152
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) applied into the neural line of a power system, which can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault, was reported to be the effective application location of the SFCL in a power system. However, the limiting operation for the symmetrical fault current like the triple line-ground fault is not effective because of properties of the balanced three-phase system. In this paper, the limiting method of the symmetrical fault current in a power system with a SFCL applied into neutral line was suggested. Through the short-circuit experiments of the three-phase fault types for the suggested method, the fault current limiting and recovery characteristics of the SFCL in the neutral line were analyzed and the effectiveness of the suggested method was described.

A Small Signal Modeling of Three-level Neutral-Point-Clamped Inverter and Neutral-Point Voltage Oscillation Reduction (3레벨 NPC인버터의 소신호 모델링과 중성점 전압 진동 저감)

  • Cho, Ja-Hwi;Ku, Nam-Joon;Joung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.407-414
    • /
    • 2014
  • This study proposes a control design for the grid output current and for reducing the neutral-point voltage oscillation through the small-signal modeling of the three-phase grid connected with a three-level neutral-point-clamped (NPC) inverter with LCL filter. The three-level NPC inverter presents an inherent problem: the neutral-point voltage fluctuation caused by the neutral-point current flowing in or out from the neutral point. The small signal modeling consists of averaging, dq0 transformation, perturbing, and linearizing steps performed on a three-phase grid connected to a three-level NPC inverter with LCL filter. The proposed method controls both the grid output and neutral-point currents at every switching period and reduces the neutral-point voltage oscillation. The validity of the proposed method is verified through simulation and experiment.