• Title/Summary/Keyword: Neuroprotective activity

Search Result 294, Processing Time 0.028 seconds

Potential role of phytochemicals in brain plasticity: Focus on polyunsaturated fatty acids

  • Yook, Jang Soo;Lee, Minchul
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • [Purpose] Functional foods are thought to strongly influence the structure and function of the brain. Previous studies have reported that brain-boosting diets may enhance neuroprotective functions. Certain foods are particularly rich in nutrients like phytochemicals that are known to support brain plasticity; such foods are commonly referred to as brain foods. [Methods] In this review, we briefly explore the scientific evidence supporting the neuroprotective activity of a number of phytochemicals with a focus on phenols and polyunsaturated fatty acids such as flavonoid, olive oil, and omega-3 fatty acid. [Results] The aim of this study was to systematically examine the primary issues related to phytochemicals in the brain. These include (a) the brain-gut-microbiome axis; (b) the effects of phytochemicals on gut microbiome and their potential role in brain plasticity; (c) the role of polyunsaturated fatty acids in brain health; and (d) the effects of nutrition and exercise on brain function. [Conclusion] This review provides evidence supporting the view that phytochemicals from medicinal plants play a vital role in maintaining brain plasticity by influencing the brain-gut-microbiome axis. The consumption of brain foods may have neuroprotective effects, thus protecting against neurodegenerative disorders and promoting brain health.

Effect of Codonopsis lanceolata with Steamed and Fermented Process on Scopolamine-Induced Memory Impairment in Mice

  • Weon, Jin Bae;Yun, Bo-Ra;Lee, Jiwoo;Eom, Min Rye;Ko, Hyun-Jeong;Kim, Ji Seon;Lee, Hyeon Yong;Park, Dong-Sik;Chung, Hee-Chul;Chung, Jae Youn;Ma, Choong Je
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.405-410
    • /
    • 2013
  • Codonopsis lanceolata (Campanulaceae) traditionally have been used as a tonic and to treat patients with lung abscesses. Recently, it was proposed that the extract and some compounds isolated from C. lanceolata reversed scopolamine-induced memory and learning deficits. The purpose of this study was to evaluate the improvement of cognitive enhancing effect of C. lanceolata by steam and fermentation process in scopolamine-induced memory impairment mice models by passive avoidance test and Morris water maze test. The extract of C. lanceolata or the extract of steamed and fermented C. lanceolata (SFCE) was orally administered to male mice at the doses of 100 and 300 mg/kg body weight. As a result, mice treated with steamed and fermented C. lanceolata extract (SFCE) (300 mg/kg body weight, p.o.) showed shorter escape latencies than those with C. lanceolata extract or the scopolamine-administered group in Morris water maze test. Also, it exerted longer step-through latency time than scopolamine treated group in passive avoidance test. Furthermore, neuroprotective effect of SFCE on glutamate-induced cytotoxicity was assessed in HT22 cells. Only SFCE-treated cells showed significant protection at 500 ${\mu}g/ml$. Interestingly, steamed C. lanceolata with fermentation contained more phenolic acid including gallic acid and vanillic acid than original C. lanceolata. Collectively, these results suggest that steam and fermentation process of C. lanceolata increased cognitive enhancing activity related to the memory processes and neuroprotective effect than original C. lanceolata.

The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia

  • Lee, Kyung-Eon;Cho, Kyung-Ok;Choi, Yun-Sik;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.185-192
    • /
    • 2016
  • Ampicillin, a ${\beta}$-lactam antibiotic, dose-dependently protects neurons against ischemic brain injury. The present study was performed to investigate the neuroprotective mechanism of ampicillin in a mouse model of transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral common carotid artery occlusion for 40 min. Before transient forebrain ischemia, ampicillin (200 mg/kg, intraperitoneally [i.p.]) or penicillin G (6,000 U/kg or 20,000 U/kg, i.p.) was administered daily for 5 days. The pretreatment with ampicillin but not with penicillin G significantly attenuated neuronal damage in the hippocampal CA1 subfield. Mechanistically, the increased activity of matrix metalloproteinases (MMPs) following forebrain ischemia was also attenuated by ampicillin treatment. In addition, the ampicillin treatment reversed increased immunoreactivities to glial fibrillary acidic protein and isolectin B4, markers of astrocytes and microglia, respectively. Furthermore, the ampicillin treatment significantly increased the level of glutamate transporter-1, and dihydrokainic acid (DHK, 10 mg/kg, i.p.), an inhibitor of glutamate transporter-1 (GLT-1), reversed the neuroprotective effect of ampicillin. Taken together, these data indicate that ampicillin provides neuroprotection against ischemia-reperfusion brain injury, possibly through inducing the GLT-1 protein and inhibiting the activity of MMP in the mouse hippocampus.

Neuroprotective effects of L-carnitine against oxygen-glucose deprivation in rat primary cortical neurons

  • Kim, Yu-Jin;Kim, Soo-Yoon;Sung, Dong-Kyung;Chang, Yun-Sil;Park, Won-Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.7
    • /
    • pp.238-248
    • /
    • 2012
  • Purpose: Hypoxic-ischemic encephalopathy is an important cause of neonatal mortality, as this brain injury disrupts normal mitochondrial respiratory activity. Carnitine plays an essential role in mitochondrial fatty acid transport and modulates excess acyl coenzyme A levels. In this study, we investigated whether treatment of primary cultures of rat cortical neurons with L-carnitine was able to prevent neurotoxicity resulting from oxygen-glucose deprivation (OGD). Methods: Cortical neurons were prepared from Sprague-Dawley rat embryos. L-Carnitine was applied to cultures just prior to OGD and subsequent reoxygenation. The numbers of cells that stained with acridine orange (AO) and propidium iodide (PI) were counted, and lactate dehydrogenase (LDH) activity and reactive oxygen species (ROS) levels were measured. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were performed to evaluate the effect of L-carnitine (1 ${\mu}M$, 10 ${\mu}M$, and 100 ${\mu}M$) on OGD-induced neurotoxicity. Results: Treatment of primary cultures of rat cortical neurons with L-carnitine significantly reduced cell necrosis and prevented apoptosis after OGD. L-Carnitine application significantly reduced the number of cells that died, as assessed by the PI/AO ratio, and also reduced ROS release in the OGD groups treated with 10 ${\mu}M$ and 100 ${\mu}M$ of L-carnitine compared with the untreated OGD group (P<0.05). The application of L-carnitine at 100 ${\mu}M$ significantly decreased cytotoxicity, LDH release, and inhibited apoptosis compared to the untreated OGD group (P<0.05). Conclusion: L-Carnitine has neuroprotective benefits against OGD in rat primary cortical neurons in vitro.

Molecular Taxonomy of a Soil Actinomycete Isolate, KCCM10454 Showing Neuroprotective Activity by 16S rRNA and rpoB Gene Analysis

  • Lee Bong Hee;Kim Hong;Kim Hyun Ju;Lim Yoon Kyu;Byun Kyung Hee;Hutchinson Brian;Kim Chang Jin;Ko Young Hwan;Lee Keun Hwa;Cha Chang Yong;Kook Yoon Hoh;Kim Bum Joon
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.213-218
    • /
    • 2005
  • Epilepsy constitutes a significant public health problem, and even the newest drugs and neurosurgical techniques have proven unable to cure the disease. In order to select a group of isolates which could generate an active compound with neuroprotective or antiepileptic properties, we isolated 517 actinomycete strains from soil samples taken from Jeju Island, in South Korea. We then screened these strains for possible anti-apoptotic effects against serum deprivation-induced hippocampal cell death, using the 3-(4, 5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay as an in vitro test. The excitotoxic glutamate analog, kainic acid (KA), was used to induce seizures in experimental mice in our in vivo tests. As a result of this testing, we located one strain which exhibited profound neuroprotective activity. This strain was identified as a Streptomyces species, and exhibited the rifampinresistant genotype, Asn$(AAC)^$442, according to the results of 16S rRNA and rpoB gene analyses

Protective role of Populus tomentiglandulosa against hydrogen peroxide-induced oxidative stress in SH-SY5Y neuronal cells

  • Kwon, Yu Ri;Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.357-363
    • /
    • 2020
  • Oxidative stress caused by the overproduction of reactive oxygen species (ROS) is known as an etiology of neurodegenerative diseases. Populus tomentiglandulosa (PT), a member of the Salicaceae family, is widely grown in Korea and has been reported to exert protective effects on cerebral ischemia by attenuating of oxidative stress and neuronal damage. In the present study, we investigated the antioxidant activity and neuroprotective effects of an ethanol extract and four fractions [n-butanol, ethyl acetate (EtOAc), chloroform, and n-hexane] of PT under in vitro and cellular systems. The extract and four fractions of PT showed 1,1-diphenyl-2-picrylhydrazyl (DPPH), •OH, and O2- radical scavenging activities in a dose-dependent manner. In particular, the EtOAc fraction of PT had the strongest DPPH, •OH, and O2- radical scavenging activities among the extract and other fractions. Therefore, we further investigated the neuroprotective effect of the EtOAc fraction of PT against oxidative stress in H2O2-induced SH-SY5Y cells. Treatment with H2O2 significantly decreased cell viability and lactate dehydrogenase (LDH) release, and it also increased the ROS levels compared to the normal group. However, treatment with the EtOAc fraction of PT significantly increased cell viability. Moreover, the EtOAc fraction of PT-treated group significantly suppressed ROS production and LDH release compared to the H2O2-induced control group. In conclusion, our findings indicated that PT had in vitro antioxidant activity and neuroprotective effects against oxidative stress. Therefore, PT could be used as a natural agent for protection against oxidative stress.

Neuroprotective effect of Aster yomena ethanolic extract in HT-22 and SK-N-MC cells based on antioxidant activity

  • In Young Kim;Jong Min Kim;Hyo Lim Lee;Min Ji Go;Han Su Lee;Ju Hui Kim;Hyun Ji Eo;Chul-Woo Kim;Ho Jin Heo
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.99-111
    • /
    • 2024
  • The antioxidant potentials of ethanolic extracts derived from Aster yomena (A. yomena) were evaluated by assessing their total phenolic and flavonoid contents and radical scavenging activities. Our findings revealed that the 60% ethanolic extract of A. yomena exhibited the most robust antioxidant properties among all extracts tested. Specifically, the IC50 values for the 2,2'-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities of the 60% ethanolic extract from A. yomena were determined to be 1,640.30 ㎍/mL and 2,655.10 ㎍/mL, respectively. Moreover, the inhibitory effect on malondialdehyde increased with the 60% ethanolic extract from A. yomena. To assess the neuroprotective effects, we examined the impact of the 60% ethanolic extract from A. yomena against H2O2-induced cytotoxicity in HT-22 (mouse hippocampal neuronal cell line) and SK-N-MC (human neuroblastoma cell line) cells. The results demonstrated a significant improvement in cell viability and reduced intracellular oxidative stress. Furthermore, the major bioactive compounds present in the 60% ethanolic extract from A. yomena were identified as chlorogenic acid and rutin through high-performance liquid chromatography (HPLC) analysis.

Rhus verniciflua Stokes Extract and Its Flavonoids Protect PC-12 Cells against H2O2-Induced Cytotoxicity

  • Nam, Tae Gyu;Lee, Bong Han;Choi, Hyo-Kyoung;Mansur, Ahmad Rois;Lee, Sang Gil;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1090-1097
    • /
    • 2017
  • Rhus verniciflua Stokes (RVS), an herbal medicine found in East Asia, was extracted and further fractionated to investigate its antioxidant capacity and neuroprotective effects. The RVS ethyl acetate (EtOAc) fraction had the highest level of total phenolics and antioxidant capacity among all solvent fractions tested. Pretreatment of PC-12 cells with the EtOAc fraction effectively attenuated $H_2O_2$-induced oxidative damage. Furthermore, the EtOAc fraction significantly attenuated caspase-3 activity, resulting in inhibition of $H_2O_2$-induced apoptosis. We identified and quantified fustin, sulfuretin, and butein in the EtOAc fraction using accurate mass quadrupole time-of-flight mass spectrometry and reversed-phase high-performance liquid chromatography. The intracellular antioxidant capacity and superoxide dismutase (SOD) activity were significantly increased in PC-12 cells treated with the EtOAc fraction and with individual flavonoids. When cells were pretreated with the EtOAc fraction or individual flavonoids and then co-incubated with diethyldithiocarbamic acid (an inhibitor of SOD activity), cell viability against $H_2O_2$-induced oxidative stress was attenuated. These results suggest that the RVS EtOAc fraction and its flavonoid constituents protect PC-12 cells against $H_2O_2$-induced neurotoxicity through their antioxidant properties.

Neuroprotective Effects of Lacosamide in Experimental Peripheral Nerve Injury in Rats : A Prospective Randomized and Placebo-Controlled Trial

  • Demiroz, Serdar;Ur, Koray;Bengu, Aydin Sukru;Ulucan, Aykut;Atici, Yunus;Erdogan, Sinan;Cirakli, Alper;Erdem, Sevki
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.171-177
    • /
    • 2020
  • Objective : To evaluate the neuroprotective effects of lacosamide after experimental peripheral nerve injury in rats. Methods : A total of 28 male wistar albino rats weighing 300-350 g were divided into four groups. In group I, the sciatic nerve exposed and the surgical wound was closed without injury; in group II, peripheral nerve injuries (PNI) was performed after dissection of the nerve; in group III, PNI was performed after dissection and lacosamide was administered, and in group IV, PNI was performed after dissection and physiological saline solution was administered. At 7 days after the injury all animals were sacrificed after walking track analysis. A 5 mL blood sample was drawn for biochemical analysis, and sciatic nerve tissues were removed for histopathological examination. Results : There is low tissue damage in lacosamide treated group and antioxidant anzymes and malondialdehyde levels were higher than non-treated and placebo treated group. However there was no improvement on clinical assessment. Conclusıon : The biochemical and histological analyses revealed that lacosamide has neuroprotective effect in PNI in rats. This neuroprotective capacity depends on its scavenger role for free oxygen radicals by increasing antioxidant enzyme activity.