• Title/Summary/Keyword: Neurophysiological

Search Result 150, Processing Time 0.028 seconds

Clinical practice guidelines for intraoperative neurophysiological monitoring: 2020 update

  • Korean Society of Intraoperative Neurophysiological Monitoring;Korean Neurological Association;Korean Academy of Rehabilitation Medicine;Korean Society of Clinical Neurophysiology;Korean Association of EMG Electrodiagnostic Medicine
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.1
    • /
    • pp.35-45
    • /
    • 2021
  • The utility and accuracy of intraoperative neurophysiological monitoring (IONM) has evolved greatly following the recent development of new devices for neurophysiological testing and advances in anesthesiology. Until recently, the need for IONM services has been limited to large academic hospitals, but the demand for neurophysiologists with expertise in IONM has grown rapidly across diverse types of hospital. The primary goal of the Korean Society of Intraoperative Neurophysiological Monitoring (KSION) is to promote the development of IONM research groups and to contribute to the improvement of fellowship among members and human health through academic projects. These guidelines are based on extensive literature reviews, recruitment of expert opinions, and consensus among KSION board members. This version of the guidelines was fully approved by the KSION, Korean Association of EMG Electrodiagnostic Medicine, the Korean Society of Clinical Neurophysiology, the Korean Academy of Rehabilitation Medicine, and the Korean Neurological Association.

Transcranial magnetic stimulation parameters as neurophysiological biomarkers in Alzheimer's disease

  • Lee, Juyoun;Lee, Ae Young
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.1
    • /
    • pp.7-16
    • /
    • 2021
  • Transcranial magnetic stimulation (TMS) is a safe and noninvasive tool for investigating the cortical excitability of the human brain and the neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits. Neurophysiological biomarkers based on TMS parameters can provide information on the pathophysiology of dementia, and be used to diagnose Alzheimer's disease and differentiate different types of dementia. This review introduces the basic principles of TMS, TMS devices and stimulating paradigms, several neurophysiological measurements, and the clinical implications of TMS for Alzheimer's disease.

Review of the Neurophysiological Therapeutic Exercise Approach (신경생리학적 운동치료접근의 재조명)

  • Bae Sung-Soo;Kwon Mi-Ji;Chung Hyung-Kuk
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.1
    • /
    • pp.133-139
    • /
    • 2000
  • Neurophysiological therapeutic exercise had started 1940-1960 that used for CNS patient's rehabilitation is the world. In America, PNF, Bobath, Brunnstrom technique are reviewed through the NUSTEP and II STEP on 1967. The NUSTEP provide common interest of neurophysiological therapeutic exercise. The II STEP provide new concept of neurophysiological therapeutic exercise from scholar, professor and clinician. New concept include not only using the reflex but also motor learning, motor control and motor behavior. It is including neurobiologic interaction, biomechanics and motor science. Therefore, neurophysiological therapeutic exercise have to change with the purpose of the therapeutic exercise.

  • PDF

Neurophysiological Evidence for Sensory Processing Disorder (감각처리 장애에 대한 신경생리학적 증거들)

  • Kim, Eun-Young
    • Therapeutic Science for Rehabilitation
    • /
    • v.1 no.1
    • /
    • pp.5-16
    • /
    • 2012
  • Sensory integration started as a theory to provide a occupational therapist with a useful frame for explaining and intervening the problems which children have. Most researches on sensory processing disorder (SPD) have been found empirical evidence to support the sensory integration theory by measuring behavioral manifestations of SPD. Recently, researchers who are interested in the diagnosis of SPD have begun to use neurophysiological methods to establish objective evidence for sensory integration. These studies reported the neurophysiological indexes reflecting the maladaptive behaviors as well as the difference between children with SPD and typically developing children in using electrodermal activity, vagal tone, EEG. Future neurophysiological studies on SPD will be expected to prove the efficacy of sensory integration intervention.

Application of Neurophysiological Studies in Clinical Neurology (임상신경생리 분야에서의 신경생리적 검사법의 응용)

  • Lee, Kwang-Woo;Park, Kyung-Seok
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Since Hans Berger reported the first paper on the human electroencephalogram in 1920s, huge technological advance have made it possible to use a number of electrophysiological approaches to neurological diagnosis in clinical neurology. In majority of the neurology training hospitals they have facilities of electroencephalography(EEG), electromyography(EMG), evoked potentials(EP), polysomnography(PSG), electronystagmography(ENG) and, transcranial doppler(TCD) ete. Clinicials and electrophysiologists should understand the technologic characteristics and general applications of each electrophysiological studies to get useful informations with using them in clinics. It is generally agreed that items of these tests are selected under the clinical examination, the tests are performed by the experts, and the test results are interpretated under the clinical background. Otherwise these tests are sometimes useless and lead clinicians to misunderstand the lesion site, the nature of disease, or the disease course. In this sense the clinical utility of neurophysiological tests could be summerized in the followings. First, the abnormal functioning of the nervous system and its environments can be demonstrated when the history and neurological examinations are equivocal. Second, the presence of clinically unsuspected malfunction in the nervous system can be revealed by those tests. Finally the objective changes can be monitored over time in the patient's status. Also intraoperative monitoring technique becomes one of the important procedures when the major operations in the posterior fossa or in the spinal cord are performed. In 1996, the Korean Society for Clinical Neurophysiology(KSCN) was founded with the hope that it will provide the members with the comfortable place for discussing their clinical and academic experience, exchanging new informations, and learning new techniques of the neurophysiological tests. The KSCN could collaborate with the International Federation of Clinical Neurophysiology(IFCN) to improve the level of the clinical neurophysiologic field in Korea as will as in Asian region.1 In this paper the clinical neurophysiological tests which are commonly used in clinical neurology and which will be delt with and educated by the KSCN in the future will be discussed briefly in order of EEG, EMG, EP, PSG, TCD, ENG, and Intraoperative monitoring.

  • PDF

Intraoperative Neurophysiological Monitoring during Microvascular Decompression Surgery for Hemifacial Spasm

  • Park, Sang-Ku;Joo, Byung-Euk;Park, Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.367-375
    • /
    • 2019
  • Hemifacial spasm (HFS) is due to the vascular compression of the facial nerve at its root exit zone (REZ). Microvascular decompression (MVD) of the facial nerve near the REZ is an effective treatment for HFS. In MVD for HFS, intraoperative neurophysiological monitoring (INM) has two purposes. The first purpose is to prevent injury to neural structures such as the vestibulocochlear nerve and facial nerve during MVD surgery, which is possible through INM of brainstem auditory evoked potential and facial nerve electromyography (EMG). The second purpose is the unique feature of MVD for HFS, which is to assess and optimize the effectiveness of the vascular decompression. The purpose is achieved mainly through monitoring of abnormal facial nerve EMG that is called as lateral spread response (LSR) and is also partially possible through Z-L response, facial F-wave, and facial motor evoked potentials. Based on the information regarding INM mentioned above, MVD for HFS can be considered as a more safe and effective treatment.

Techniques for the Neurophysiological Experiments of Brain and Behavior (신경생리학적(神經生理學的) 동물실험(動物實驗)의 기초(基礎))

  • Cheon, Jin-Sook
    • Sleep Medicine and Psychophysiology
    • /
    • v.1 no.2
    • /
    • pp.145-155
    • /
    • 1994
  • The neurophysiological study has been widely used in the search of the relation between brain and behavior. The basic techniques for the animal experiments of this kind such as stereotaxic techniques, lesioning methods, the methods of electrical stimulation and confirmation of histological location were simply reviewed. Nevertheless, the importance of complementary neurochemical, neuroanatomical and behavioral studies can not be neglected.

  • PDF

Intraoperative Neurophysiological Monitoring in Cerebello Pontine Angle Tumor

  • Park, Sang-Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • Intraoperative Neurophysiological Monitoring (INM) inspection has a very important role. While preserving the patient's neurological function be sure to safe surgery, neurological examination should thank. Cerebello pontine angle tumor surgery, especially in the nervous system is more important to the meaning of INM. In cochlear nerve, facial nerve, trigeminal nerve, which are intricate brain surgery, doctors are only human eye and brain to the brain that it is virtually impossible to distinguish the nervous system. They receives a lot of help from INM. In this paper, we examined six kinds broadly. First, the methods of spontaneous EMG and Free-running EMG, which can instantly detect a damage inflicted on a nerve during surgery. Second, methods of triggered EMG and direct nerve electrical stimulation, which directly stimulate a nerve using electricity to distinguish between nerves and brain tumors. Third, the method of knowing a more accurate neurologic status by informing neurological surgeons about Free-running EMG wave forms that are segmetalized into four. Fourth, three ways of knowing when a patient will be awaken from intraoperative anesthesia, which happens due to a weak anesthetic. Fifth, a method of understanding the structures of a brain tumor and a facial nerve as five dividend segments. Sixth, comparisons between cases normal facial nerve recovery and occurrence of a facial nerve paralysis during the postoperative course.

Basic Techniques of Intraoperative Neurophysiological Monitoring

  • Park, Sang-Ku;Hyun, Soon-Chul;Lim, Sung-Hyuk;Park, Chan-Woo;Park, Jin-Woo;Kim, Dong-Jun;Choi, Wan-Soo;Kim, Gi-Bong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.2
    • /
    • pp.77-85
    • /
    • 2013
  • Intraoperative Neurophysiological Monitoring (INM) is very useful in monitoring the motorsensory pathway and vascular circulation system during intraspinal, or intracranial neurosurgery. Brainstem Auditory Evoked Potentials (BAEPs) are for detecting the problems along the auditory pathways including, the eighth cranial nerve and brainstem. Motor Evoked Potentials (MEPs) is a useful adjunct to conventional monitoring of Somato-sensory Evoked Potentials (SEPs) during surgery. Visual Evoked Potentials (VEPs) has been regarded as having limited significance for the preservation of visual function during neurosurgical procedures. In this paper, we propose that the most appropriate averaging of the number of inspections in the inspection of each used in the operative field, is good and efficient, functionally.

  • PDF

Intraoperative Neurophysiological Monitoring and Neuromuscular Anesthesia Depth Monitoring (수술 중 신경계 추적 감시 검사와 근 이완 마취 심도의 측정)

  • Kim, Sang-Hun;Park, Soon-Bu;Kang, Hyo-Chan;Park, Sang-Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.317-326
    • /
    • 2020
  • Deep blocking of consciousness alone does not prevent a reaction to severe stimuli, and copious amounts of pain medication do not guarantee unconsciousness. Therefore, anesthesia must satisfy both: the loss of consciousness as well as muscle relaxation. Muscle relaxants improve the intra-bronchial intubation, surgical field of vision, and operating conditions, while simultaneously reducing the dose of inhalation or intravenous anesthesia. Muscle relaxants are also very important for breathing management during controlled mechanical ventilation during surgery. Excessive dosage of such muscle relaxants may therefore affect neurological examinations during surgery, but an insufficient dosage will result in movement of the patient during the procedure. Hence, muscle relaxation anesthesia depth and neurophysiological monitoring during surgery are closely related. Using excessive muscle relaxants is disadvantageous, since neurophysiological examinations during surgery could be hindered, and eliminating the effects of complete muscle relaxation after surgery is challenging. In the operation of neurophysiological monitoring during the operation, the anesthesiologist administers muscle relaxant based on what standard, it is hoped that the examination will be performed more smoothly by examining the trends in the world as well as domestic and global trends in maintaining muscle relaxant.