DOI QR코드

DOI QR Code

Transcranial magnetic stimulation parameters as neurophysiological biomarkers in Alzheimer's disease

  • Lee, Juyoun (Department of Neurology, Chungnam National University Hospital) ;
  • Lee, Ae Young (Department of Neurology, Chungnam National University Hospital)
  • Received : 2021.02.01
  • Accepted : 2021.03.29
  • Published : 2021.04.30

Abstract

Transcranial magnetic stimulation (TMS) is a safe and noninvasive tool for investigating the cortical excitability of the human brain and the neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits. Neurophysiological biomarkers based on TMS parameters can provide information on the pathophysiology of dementia, and be used to diagnose Alzheimer's disease and differentiate different types of dementia. This review introduces the basic principles of TMS, TMS devices and stimulating paradigms, several neurophysiological measurements, and the clinical implications of TMS for Alzheimer's disease.

Keywords

References

  1. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985;1:1106-1107.
  2. Pascual-Leone A, Houser CM, Reese K, Shotland LI, Grafman J, Sato S, et al. Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 1993;89:120-130. https://doi.org/10.1016/0168-5597(93)90094-6
  3. Koch G, Martorana A, Caltagirone C. Transcranial magnetic stimulation: emerging biomarkers and novel therapeutics in Alzheimer's disease. Neurosci Lett 2020;719:134355. https://doi.org/10.1016/j.neulet.2019.134355
  4. Faraday M. Experimental researches in electricity. 1st ed. London: Dover Publications, 1832;1-368.
  5. Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front Hum Neurosci 2015;9:303. https://doi.org/10.3389/fnhum.2015.00303
  6. Hallett M. Transcranial magnetic stimulation and the human brain. Nature 2000;406:147-150. https://doi.org/10.1038/35018000
  7. Abdeen MA, Stuchly MA. Modeling of magnetic field stimulation of bent neurons. IEEE Trans Biomed Eng 1994;41:1092-1095. https://doi.org/10.1109/10.335848
  8. Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2009;2:215-228.e3. https://doi.org/10.1016/j.brs.2009.03.007
  9. Thickbroom GW. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res 2007;180:583-593. https://doi.org/10.1007/s00221-007-0991-3
  10. Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 2010;30:15067-15079. https://doi.org/10.1523/JNEUROSCI.2059-10.2010
  11. Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH, et al. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul 2012;5:435-453. https://doi.org/10.1016/j.brs.2011.10.001
  12. Gustafsson B, Wigstrom H. Physiological mechanisms underlying long-term potentiation. Trends Neurosci 1988;11:156-162. https://doi.org/10.1016/0166-2236(88)90142-7
  13. Christie BR, Kerr DS, Abraham WC. Flip side of synaptic plasticity: long-term depression mechanisms in the hippocampus. Hippocampus 1994;4:127-135. https://doi.org/10.1002/hipo.450040203
  14. Huang YZ, Chen RS, Rothwell JC, Wen HY. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 2007;118:1028-1032. https://doi.org/10.1016/j.clinph.2007.01.021
  15. Lisanby SH, Belmaker RH. Animal models of the mechanisms of action of repetitive transcranial magnetic stimulation (RTMS): comparisons with electroconvulsive shock (ECS). Depress Anxiety 2000;12:178-187. https://doi.org/10.1002/1520-6394(2000)12:3<178::AID-DA10>3.0.CO;2-N
  16. Li X, Qi G, Yu C, Lian G, Zheng H, Wu S, et al. Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment. Brain Stimul 2021;14:503-510. https://doi.org/10.1016/j.brs.2021.01.012
  17. Meyer B. Handbook of transcranial magnetic stimulation. 1st ed. London: Arnold, 2002;177-184.
  18. Roth Y, Amir A, Levkovitz Y, Zangen A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophysiol 2007;24:31-38. https://doi.org/10.1097/WNP.0b013e31802fa393
  19. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul 2014;7:643-649. https://doi.org/10.1016/j.brs.2014.04.009
  20. Kakuda W, Abo M, Nakayama Y, Kiyama A, Yoshida H. High-frequency rTMS using a double cone coil for gait disturbance. Acta Neurol Scand 2013;128:100-106. https://doi.org/10.1111/ane.12085
  21. Rubens MT, Zanto TP. Parameterization of transcranial magnetic stimulation. J Neurophysiol 2012;107:1257-1259. https://doi.org/10.1152/jn.00716.2011
  22. Williams JA, Imamura M, Fregni F. Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. J Rehabil Med 2009;41:305-311. https://doi.org/10.2340/16501977-0356
  23. Modugno N, Nakamura Y, MacKinnon CD, Filipovic SR, Bestmann S, Berardelli A, et al. Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp Brain Res 2001;140:453-459. https://doi.org/10.1007/s002210100843
  24. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45:201-206. https://doi.org/10.1016/j.neuron.2004.12.033
  25. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1994;91:79-92. https://doi.org/10.1016/0013-4694(94)90029-9
  26. Alagona G, Bella R, Ferri R, Carnemolla A, Pappalardo A, Costanzo E, et al. Transcranial magnetic stimulation in Alzheimer disease: motor cortex excitability and cognitive severity. Neurosci Lett 2001;314:57-60. https://doi.org/10.1016/S0304-3940(01)02288-1
  27. Khedr EM, Ahmed MA, Darwish ES, Ali AM. The relationship between motor cortex excitability and severity of Alzheimer's disease: a transcranial magnetic stimulation study. Neurophysiol Clin 2011;41:107-113. https://doi.org/10.1016/j.neucli.2011.03.002
  28. Ferreri F, Pauri F, Pasqualetti P, Fini R, Dal Forno G, Rossini PM. Motor cortex excitability in Alzheimer's disease: a transcranial magnetic stimulation study. Ann Neurol 2003;53:102-108. https://doi.org/10.1002/ana.10416
  29. Mimura Y, Nishida H, Nakajima S, Tsugawa S, Morita S, Yoshida K, et al. Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Neurosci Biobehav Rev 2021;121:47-59. https://doi.org/10.1016/j.neubiorev.2020.12.003
  30. Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998;29:1854-1859. https://doi.org/10.1161/01.STR.29.9.1854
  31. Burrell JR, Kiernan MC, Vucic S, Hodges JR. Motor neuron dysfunction in frontotemporal dementia. Brain 2011;134:2582-2594. https://doi.org/10.1093/brain/awr195
  32. Chen R, Lozano AM, Ashby P. Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 1999;128:539-542. https://doi.org/10.1007/s002210050878
  33. Siebner HR, Dressnandt J, Auer C, Conrad B. Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 1998;21:1209-1212. https://doi.org/10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M
  34. Perretti A, Grossi D, Fragassi N, Lanzillo B, Nolano M, Pisacreta AI, et al. Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer disease. J Neurol Sci 1996;135:31-37. https://doi.org/10.1016/0022-510X(95)00244-V
  35. Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W. Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol 1998;511(Pt 1):181-190. https://doi.org/10.1111/j.1469-7793.1998.181bi.x
  36. Ziemann U. TMS and drugs. Clin Neurophysiol 2004;115:1717-1729. https://doi.org/10.1016/j.clinph.2004.03.006
  37. Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, et al. Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 2002;59:392-397. https://doi.org/10.1212/WNL.59.3.392
  38. Di Lazzaro V, Pilato F, Dileone M, Saturno E, Profice P, Marra C, et al. Functional evaluation of cerebral cortex in dementia with Lewy bodies. Neuroimage 2007;37:422-429. https://doi.org/10.1016/j.neuroimage.2007.05.003
  39. Marra C, Quaranta D, Profice P, Pilato F, Capone F, Iodice F, et al. Central cholinergic dysfunction measured "in vivo" correlates with different behavioral disorders in Alzheimer's disease and dementia with Lewy body. Brain Stimul 2012;5:533-538. https://doi.org/10.1016/j.brs.2011.08.009
  40. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997;48:1398-1403. https://doi.org/10.1212/WNL.48.5.1398
  41. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 2000;133:425-430. https://doi.org/10.1007/s002210000432
  42. Benussi A, Di Lorenzo F, Dell'Era V, Cosseddu M, Alberici A, Caratozzolo S, et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology 2017;89:665-672. https://doi.org/10.1212/WNL.0000000000004232
  43. Cantone M, Di Pino G, Capone F, Piombo M, Chiarello D, Cheeran B, et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol 2014;125:1509-1532. https://doi.org/10.1016/j.clinph.2014.04.010
  44. Di Lazzaro V, Pilato F, Dileone M, Saturno E, Oliviero A, Marra C, et al. In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. Neurology 2006;66:1111-1113. https://doi.org/10.1212/01.wnl.0000204183.26231.23
  45. Pierantozzi M, Panella M, Palmieri MG, Koch G, Giordano A, Marciani MG, et al. Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 2004;115:2410-2418. https://doi.org/10.1016/j.clinph.2004.04.022
  46. Benussi A, Grassi M, Palluzzi F, Koch G, Di Lazzaro V, Nardone R, et al. Classification accuracy of transcranial magnetic stimulation for the diagnosis of neurodegenerative dementias. Ann Neurol 2020;87:394-404. https://doi.org/10.1002/ana.25677
  47. Nardone R, Bergmann J, Christova M, Caleri F, Tezzon F, Ladurner G, et al. Short latency afferent inhibition differs among the subtypes of mild cognitive impairment. J Neural Transm (Vienna) 2012;119:463-471. https://doi.org/10.1007/s00702-011-0725-3
  48. Trebbastoni A, Pichiorri F, D'Antonio F, Campanelli A, Onesti E, Ceccanti M, et al. Altered cortical synaptic plasticity in response to 5-Hz repetitive transcranial magnetic stimulation as a new electrophysiological finding in amnestic mild cognitive impairment converting to Alzheimer's disease: results from a 4-year prospective cohort study. Front Aging Neurosci 2016;7:253.
  49. Trebbastoni A, Gilio F, D'Antonio F, Cambieri C, Ceccanti M, de Lena C, et al. Chronic treatment with rivastigmine in patients with Alzheimer's disease: a study on primary motor cortex excitability tested by 5 Hz-repetitive transcranial magnetic stimulation. Clin Neurophysiol 2012;123:902-909. https://doi.org/10.1016/j.clinph.2011.09.010
  50. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, et al. Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg Psychiatry 2005;76:1064-1069. https://doi.org/10.1136/jnnp.2004.051334
  51. Koch G, Di Lorenzo F, Bonni S, Ponzo V, Caltagirone C, Martorana A. Impaired LTP- but not LTD-like cortical plasticity in Alzheimer's disease patients. J Alzheimers Dis 2012;31:593-599. https://doi.org/10.3233/JAD-2012-120532
  52. Rossi S, Rossini PM. TMS in cognitive plasticity and the potential for rehabilitation. Trends Cogn Sci 2004;8:273-279. https://doi.org/10.1016/j.tics.2004.04.012
  53. Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 2008;15:1286-1292. https://doi.org/10.1111/j.1468-1331.2008.02202.x
  54. Haffen E, Chopard G, Pretalli JB, Magnin E, Nicolier M, Monnin J, et al. A case report of daily left prefrontal repetitive transcranial magnetic stimulation (rTMS) as an adjunctive treatment for Alzheimer disease. Brain Stimul 2012;5:264-266. https://doi.org/10.1016/j.brs.2011.03.003
  55. Guse B, Falkai P, Wobrock T. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm (Vienna) 2010;117:105-122. https://doi.org/10.1007/s00702-009-0333-7
  56. Lee J, Choi BH, Oh E, Sohn EH, Lee AY. Treatment of Alzheimer's disease with repetitive transcranial magnetic stimulation combined with cognitive training: a prospective, randomized, double-blind, placebo-controlled study. J Clin Neurol 2016;12:57-64. https://doi.org/10.3988/jcn.2016.12.1.57
  57. Nardone R, Tezzon F, Holler Y, Golaszewski S, Trinka E, Brigo F. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 2014;129:351-366. https://doi.org/10.1111/ane.12223
  58. Anderkova L, Eliasova I, Marecek R, Janousova E, Rektorova I. Distinct pattern of gray matter atrophy in mild Alzheimer's disease impacts on cognitive outcomes of noninvasive brain stimulation. J Alzheimers Dis 2015;48:251-260. https://doi.org/10.3233/JAD-150067
  59. Lee J, Sohn EH, Oh E, Song CJ, Jeong SH, Lee AY. Cognitive effect of repetitive transcranial magnetic stimulation with cognitive training: long-term mitigation neurodegenerative effects of mild Alzheimer's disease. Int J Gerontol 2020;14:133-137.
  60. Wang X, Mao Z, Yu X. The role of noninvasive brain stimulation for behavioral and psychological symptoms of dementia: a systematic review and meta-analysis. Neurol Sci 2020;41:1063-1074. https://doi.org/10.1007/s10072-020-04245-4
  61. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020;131:474-528. https://doi.org/10.1016/j.clinph.2019.11.002
  62. Chu HT, Cheng CM, Liang CS, Chang WH, Juan CH, Huang YZ, et al. Efficacy and tolerability of theta-burst stimulation for major depression: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2021;106:110168. https://doi.org/10.1016/j.pnpbp.2020.110168
  63. Wu X, Ji GJ, Geng Z, Zhou S, Yan Y, Wei L, et al. Strengthened theta-burst transcranial magnetic stimulation as an adjunctive treatment for Alzheimer's disease: an open-label pilot study. Brain Stimul 2020;13:484-486. https://doi.org/10.1016/j.brs.2019.12.020