• Title/Summary/Keyword: Neuronal activation

Search Result 290, Processing Time 0.027 seconds

Effect of BangPungTongSungSan(BPTSS, 防風通聖散) on acute methamphetamine-induced locomotor activity and c-Fos expression in mice (방풍통성산(防風通聖散)의 급성 메스암페타민에 의한 보행성 행동량과 c-Fos발현에 대한 효과)

  • Shin, Ji-Seob;Jang, Eun-Young;Kim, Dan-Hyo;Kim, Sang-Chan;Kim, Kwang-Joong;Yang, Chae-Ha
    • Herbal Formula Science
    • /
    • v.19 no.2
    • /
    • pp.39-46
    • /
    • 2011
  • Objectives : The BangPungTongSungSan(BPTSS) has been used as a therapeutic agent for cerebrovascular disease, cerebral hemorrhage, hypertension, diabetes and obesity in oriental medicine. The present study designed to investigate the effect of BPTSS on behavioral change and neuronal activation induced by acute methamphetamine(METH, 2 mg/kg, i.p.) in C57BL/6 mice. Methods : Mice received the oral administration of BPTTS(25, 50 and 100 mg/kg) 1 h prior to saline or METH administration. Locomotor activity was measured for 90 min using videotractking method and c-Fos expression, as marker of neuronal activation, was identified in a separate groups of mice by immunohistochemistry. Results and conclusions : Methamphetamine injection significantly increased locomotor activity and c-Fos expression in the nucleus accumbens and striatum. Interestingly, BPTTS(100 mg/kg) significantly suppressed locomotor activity and c-Fos expression in the nucleus accumbens and striatum by acute exposure to METH. These results suggest that BangPungTongSungSan may be effective in suppressing the reinforcing effect of methamphetamine by modulation neuronal activity.

Involvement of Cytosolic Phospholipase $A_2$ in Nerve Growth Factor-Mediated Neurite Outgrowth of PC12 Cells

  • Choi, Soon-Wook;Yu, Eun-Ah;Lee, Young-Seek;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.525-530
    • /
    • 2000
  • The nerve growth factor (NGF) induces neuronal differentiation and neurite outgrowth of PC12 cells, whereas epidermal growth factors (EGF) stimulate growth and proliferation of the cells. In spite of this difference, NGF-or EGF-treated PC12 cells share various properties in cellular-signaling pathways. These include the activation of the phosphoinositide (PI)-3 kinase, 70 kDa S6 kinase, and in the mitogen-activated protein (MAP) kinase pathway, following the binding of these growth factors to intrinsic receptor tyrosine kinases (RTKs). Therefore, many studies have been attempted to access the critical signaling events in determining the differentiation and proliferation of PC12 cells. In this study, we investigated the cytosolic phospholipase $A_2$ ($cPLA_2$) in neurite behavior in order to identify the differences of signaling pathways between the NGF-induced differentiation and the EGF-induced proliferation of PC12 cells. We have showed here that the $cPLA_2$ was translocated from cytosol to membrane only in NGF-treated cells. We also demonstrated that this translocation is associated with NGF-induced activation of phospholipase $C-{\gamma}(PLC-{\gamma})$, which elevates intracellular $Ca^{2+}$ concentration. These results reveal that the translocation of $cPLA_2$ may be a requisite event in the neuronal differentiation of PC12 cells. Various phospholipase inhibitors were used to confirm the importance of these enzymes in the differentiation of PC12 cells. Neomycin B, a PLC inhibitor, dramatically inhibited the neurite outgrowth, and two distinct $PLA_2$ inhibitors, 4-bromophenacyl bromide (BPB) and arachidonyltrifluoro-methyl ketone ($AACOCF_3$) also suppressed the neurite outgrowth of the cells, as well Taken together, these data indicated that $cPLA_2$ is involved in NGF-induced neuronal differentiation and neurite outgrowth of PC12 cells.

  • PDF

b0 Dependent Neuronal Activation in the Diffusion-Based Functional MRI

  • Kim, Hyug-Gi;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • Purpose: To develop a new diffusion-based functional MRI (fMRI) sequence to generate apparent diffusion coefficient (ADC) maps in single excitation and evaluate the contribution of b0 signal on neuronal changes. Materials and Methods: A diffusion-based fMRI sequence was designed with single measurement that can acquire images of three directions at a time, obtaining $b=0s/mm^2$ during the first baseline condition (b0_b), followed by 107 diffusion-weighted imaging (DWI) with $b=600s/mm^2$ during the baseline and visual stimulation conditions, and another $b=0s/mm^2$ during the last activation condition (b0_a). ADC was mapped in three different ways: 1) using b0_b (ADC_b) for all time points, 2) using b0_a (ADC_a) for all time points, and 3) using b0_b and b0_a (ADC_ba) for baseline and stimulation scans, respectively. The fMRI studies were conducted on the brains of 16 young healthy volunteers using visual stimulations in a 3T MRI system. In addition, the blood oxygen level dependent (BOLD) fMRI was also acquired to compare it with diffusion-based fMRI. A sample t-test was used to investigate the voxel-wise average between the subjects. Results: The BOLD data consisted of only activated voxels. However, ADC_ba data was observed in both deactivated and activated voxels. There were no statistically significant activated or deactivated voxels for DWI, ADC_b, and ADC_a. Conclusions: With the new sequence, neuronal activations can be mapped with visual stimulation as compared to the baseline condition in several areas in the brain. We showed that ADC should be mapped using both DWI and b0 images acquired with the same conditions.

Rubus fruticosus leaf extract inhibits vascular dementia-induced memory impairment and neuronal loss by attenuating neuroinflammation

  • Nak Song Sung;Sun Ho Uhm;Hyun Bae Kang;Nam Seob Lee;Young-Gil Jeong;Do Kyung Kim;Nak-Yun Sung;Dong-Sub Kim;Young Choon Yoo;Seung Yun Han
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.494-507
    • /
    • 2023
  • Vascular dementia (VaD) is characterized by progressive memory impairment, which is associated with microglia-mediated neuroinflammation. Polyphenol-rich natural plants, which possess anti-inflammatory activities, have attracted scientific interest worldwide. This study investigated whether Rubus fruticosus leaf extract (RFLE) can attenuate VaD. Sprague-Dawley rats were separated into five groups: SO, sham-operated and treated with vehicle; OP, operated and treated with vehicle; RFLE-L, operated and treated with low dose (30 mg/kg) of RFLE; RFLE-M, operated and treated with medium dose (60 mg/kg) of RFLE; and RFLE-H, operated and treated with high dose (90 mg/kg) of RFLE. Bilateral common carotid artery and hypotension were used as a modeling procedure, and the RFLE were intraorally administered for 5 days (preoperative 2 and postoperative 3 days). The rats then underwent memory tests including the novel object recognition, Y-maze, Barnes maze, and passive avoidance tests, and neuronal viability and neuroinflammation were quantified in their hippocampi. The results showed that the OP group exhibited VaD-associated memory deficits, neuronal death, and microglial activation in hippocampi, while the RFLE-treated groups showed significant attenuation in all above parameters. Next, using BV-2 microglial cells challenged with lipopolysaccharide (LPS), we evaluated the effects of RFLE in dynamics of proinflammatory mediators and the upstream signaling pathway. RFLE pretreatment significantly inhibited the LPS-induced release of nitric oxide, TNF-α, and IL-6 and upregulation of the MAPKs/NF-κB/iNOS pathway. Collectively, we suggest that RFLE can attenuate the histologic alterations and memory deficits accompanied by VaD, and these roles are, partly due to the attenuation of microglial activation.

S-Allyl-L-cysteine, a Garlic Compound, Selectively Protects Cultured Neurons from ER Stress-induced Neuronal Death

  • Ito Yoshihisa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.11a
    • /
    • pp.124-128
    • /
    • 2004
  • We have assessed amyloid ${\beta}-peptide$ $(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.

  • PDF

Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells

  • Moussavou, Ghislain;Kwak, Dong Hoon;Lim, Malg-Um;Kim, Ji-Su;Kim, Sun-Uk;Chang, Kyu-Tae;Choo, Young-Kug
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.527-532
    • /
    • 2013
  • Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs.

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

Effect of Ethanol on Mouse Brain Cell

  • Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Ethanol has long been implicated in triggering apoptotic neurodegeneration. Alcohol also may indirectly harm the fetus by imparing the mother's physiology. We examined the effects of ethanol on immature brain of mice. Three-weeks-old female ICR strain mice daily intraperitoneally injected with ethanol at the concentration of 4 and 20% in saline for 0, 6, and 24 hours and 1 and 4 weeks. The mice were weighted and sacrificed, and the brains were ectomized for the present histological, immunohistochemical and TUNEL assays. Based on the histologic hematoxylin and eosin stain, immunohistochemical expression of glutamate receptor protein and neuronal cell adhesion molecule (NCAM) were evaluated. The cerebral cortex of the ethanol-treated group showed few typical symptoms of apoptosis such as chromosome condensation and disintegration of the cell bodies. TUNEL staining revealed DNA fragmentation in the 6 and 24 hours. This results demonstrated that acute ethanol administration causes neuronal cell death. I found that either glutamate receptor inhibition or activation could induce cerebellar degeneration as ethanol effect. Neuronal death also can be induced by excess activity of certain neurotransmitter, including glutamate. Neurons must establish cell-to-cell contact during growth and development in order to survive, migrate to their final destination, and develop appropriate connections with neighboring cell. Purkinje cell in cerebellar are especially vulnerable to the cell death and degeneration. After ethanol treatment in cerebellar, NCAM had decreased by 4 weeks. This result suggest that apoptosis seems to be involved in the slow elimination of neuron and cerebellar degeneration.

The Expression of nNOS in Hirschsprung's Disease (히르쉬스프룽병의 병변부위에서 nNOS 발현)

  • Kim, Ki-Hong;Kim, Han-Seung;Lee, Seong-Cheol
    • Advances in pediatric surgery
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • Abnormal distribution of enteric nerves such as adrenergic, cholinergic and non-adrenergic non-cholinergic nerves (NANC) may cause the failure of relaxation at the involved bowel segment in Hirschsprung's disease (HD). Nitric oxide (NO) is a major inhibitory NANC neurotransmitter in the gastrointestinal tract. NO is synthesized by activation of nNOS (neuronal nitric oxide synthase) in the intramural ganglion cells and regulates bowel movement. To assess the distribution of nNOS in HD, immunohistochemical staining to nNOS was utilized on paraffin embedded specimens. Ten control colon specimens were tested for feasibility of staining. Immunohistochemisrty was done on ganglionic colon as well as aganglionic segment of 15 patients with HD. nNOS immunoreactivity was observed in the neuronal cells, small cells and nerve fibers in the muscle layer and submucosal neuronal cells of control specimens. This finding was also observed in the ganglionic segments of HD. But, there was no nNOS immunoreactivity in aganglionic segments of HD. In conclusion nNOS immunohistochemical staining of paraffin embedded specimen is feasible and reliable. And the results suggest that the relaxation failure of the aganglionic bowel in HD is related to the absence of nNOS containing cells and nerve fibers.

  • PDF

Poly(ADP-ribosyl)ation of p53 Contributes to TPEN-Induced Neuronal Apoptosis

  • Kim, Hyun-Lim;Ra, Hana;Kim, Ki-Ryeong;Lee, Jeong-Min;Im, Hana;Kim, Yang-Hee
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.312-317
    • /
    • 2015
  • Depletion of intracellular zinc by N,N,N,N-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces p53-mediated protein synthesis-dependent apoptosis of mouse cortical neurons. Here, we examined the requirement for poly(ADP-ribose) polymerase (PARP)-1 as an upstream regulator of p53 in zinc depletion-induced neuronal apoptosis. First, we found that chemical inhibition or genetic deletion of PARP-1 markedly attenuated TPEN-induced apoptosis of cultured mouse cortical neurons. Poly(ADP-ribosyl)ation of p53 occurred starting 1 h after TPEN treatment. Suggesting the critical role of PARP-1, the TPEN-induced increase of stability and activity of p53 as well as poly(ADP-ribosyl)ation of p53 was almost completely blocked by PARP inhibition. Consistent with this, the induction of downstream pro-apoptotic proteins PUMA and NOXA was noticeably reduced by chemical inhibitors or genetic deletion of PARP-1. TPEN-induced cytochrome C release into the cytosol and caspase-3 activation were also blocked by inhibition of PARP-1. Taken together, these findings indicate that PARP-1 is essential for TPEN-induced neuronal apoptosis.