• 제목/요약/키워드: Neuronal activation

검색결과 289건 처리시간 0.04초

Cyanidin-3-glucoside inhibits amyloid β25-35-induced neuronal cell death in cultured rat hippocampal neurons

  • Yang, Ji Seon;Jeon, Sujeong;Yoon, Kee Dong;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.689-696
    • /
    • 2018
  • Increasing evidence implicates changes in $[Ca^{2+}]_i$ and oxidative stress as causative factors in amyloid beta ($A{\beta}$)-induced neuronal cell death. Cyanidin-3-glucoside (C3G), a component of anthocyanin, has been reported to protect against glutamate-induced neuronal cell death by inhibiting $Ca^{2+}$ and $Zn^{2+}$ signaling. The present study aimed to determine whether C3G exerts a protective effect against $A{\beta}_{25-35}$-induced neuronal cell death in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague-Dawley rats using MTT assay for cell survival, and caspase-3 assay and digital imaging methods for $Ca^{2+}$, $Zn^{2+}$, MMP and ROS. Treatment with $A{\beta}_{25-35}$ ($20{\mu}M$) for 48 h induced neuronal cell death in cultured rat pure hippocampal neurons. Treatment with C3G for 48 h significantly increased cell survival. Pretreatment with C3G for 30 min significantly inhibited $A{\beta}_{25-35}$-induced $[Zn^{2+}]_i$ increases as well as $[Ca^{2+}]_i$ increases in the cultured rat hippocampal neurons. C3G also significantly inhibited $A{\beta}_{25-35}$-induced mitochondrial depolarization. C3G also blocked the $A{\beta}_{25-35}$-induced formation of ROS. In addition, C3G significantly inhibited the $A{\beta}_{25-35}$-induced activation of caspase-3. These results suggest that cyanidin-3-glucoside protects against amyloid ${\beta}$-induced neuronal cell death by reducing multiple apoptotic signals.

Double-stranded RNA Induces Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Park, Chan-Hee;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.253-257
    • /
    • 2004
  • Schwann cells play an important role in peripheral nerve regeneration. Upon neuronal injury, activated Schwann cells clean up the myelin debris by phagocytosis, and promote neuronal survival and axon outgrowth by secreting various neurotrophic factors. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that certain cytoplasmic molecules, which are secreted by cells undergoing necrotic cell death, induce immune cell activation via the toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. Accordingly, this study was undertaken to examine the expression and the function of the TLRs on primary Schwann cells and iSC, a rat Schwann cell line. The transcripts of TLR2, 3, 4, and 9 were detected on the primary Schwann cells as well as on iSC. The stimulation of iSC with poly (I : C), a synthetic ligand for the TLR3, induced the expression of $TNF-{\alpha}$ and RANTES. In addition, poly (I : C) stimulation induced the iNOS expression and nitric oxide secretion in iSC. These results suggest that the TLRs may be involved in the inflammatory activation of Schwann cells, which is observed during Wallerian degeneration after a peripheral nerve injury.

Oxidative stress-induced aberrant G9a activation disturbs RE-1-containing neuron-specific genes expression, leading to degeneration in human SH-SY5Y neuroblastoma cells

  • Kim, Ho-Tae;Ohn, Takbum;Jeong, Sin-Gu;Song, Anji;Jang, Chul Ho;Cho, Gwang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권1호
    • /
    • pp.51-58
    • /
    • 2021
  • Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

Influence of Cytisine on Catecholamine Release in Isolated Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon;Jang, Seok-Jeong;Kim, Kwang-Cheol
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.932-939
    • /
    • 2002
  • The aim of the present study was to determine the characteristics of cytisine on the secretion of catecholamines (CA) in isolated perfused rat adrenal glands, and to clarify its mechanism of action. The release of CA evoked by the continuous infusion of cytisine ($1.5{\times}10^{-5} M$) was time-dependently reduced from 15 min following the initiation of cytisine infusion. Furthermore, upon the repeated injection of cytisine ($5{\times}10^{-5}$), at 30 min intervals into an adrenal vein, the secretion of CA was rapidly decreased following the second injection. Tachyphylaxis to the release of CA was observed by the repeated administration of cytisine. The cytisine-induced secretion of CA was markedly inhibited by pretreatment with chlorisondamine, nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free Krebs solution, while it was not affected by pirenzepine or diphenhydramine. Moreover, the secretion of CA evoked by ACh was time-dependently inhibited by the prior perfusion of cytisine ($5{\times}10^{-6} M$). Taken together, these experimental data suggest that cytisine causes secretion of catecholamines from the perfused rat adrenal glands in a calcium-dependent fashion through the activation of neuronal nicotinic ACh receptors located in adrenomedullary chromaffin cells. It also seems that the cytisine-evoked release of catecholamine is not relevant to the activation of cholinergic M$_1$-muscarinic or histaminergic receptors.

침자가 LPS를 주입한 흰쥐 시상하부 방실핵의 신경활성에 미치는 영향 (Effects of Acupuncture on the Neuronal Activation of Paraventricular Nucleus of Hypothalamus in Lipopolysaccharide-injected Rats)

  • 손양선;박히준;김승태;임사비나
    • Korean Journal of Acupuncture
    • /
    • 제19권1호
    • /
    • pp.57-65
    • /
    • 2002
  • 본 연구에서는 침의 면역조절작용을 통한 염증반응 억제효과를 연구하기 위하여 내독소를 주입한 흰쥐의 시상하부에서 염증반응의 중추인 방실핵의 신경활성에 미치는 영향을 관찰하였다. 흰쥐의 미정맥에 LPS와 생리식염수를 각각 주입하고 군에 따라 양측 소부(HT8)나 족삼리(ST36)에 1분간 침치료를 각각 시행하였다. C-Fos는 신경활성을 자극하는 초기단계에 발현되는 유전자로서 신경계의 특정부위의 활성도를 측정하는 지표로 널리 사용되고 있다. 본 연구자는 침자극이 LPS로 인한 염증반응에 미치는 영향과 그 기전을 알아보기 위해 면역조직화학염색의 방법을 이용하여 대뇌 시상하부의 방실핵에서 c-Fos 면역활성을 측정하였다. LPS를 주입한 군의 방실핵에서 생리식염수를 주입한 군에 비해 c-Fos 면역활성이 유의하게 증가한 반면 소부에 자침했을 때 LPS에 의해 증가된 c-Fos 면역활성이 유의하게 감소하였다. 족삼리에 자침한 군에서는 유의한 변화가 나타나지 않았다. 결론적으로 소부 침치료는 LPS로 인해 증가된 방실핵의 신경활성을 효과적으로 감소시켰고 이는 침의 면역조절 및 탁월한 염증억제 효과를 보여주는 결과일 뿐 아니라 침의 인체 항상성 유지를 통한 치료기전에 대한 향후 연구의 중요한 실마리를 제공해주고 있다고 사료된다.

  • PDF

Apoptotic Cell Death in TrkA-overexpressing Cells: Kinetic Regulation of ERK Phosphorylation and Caspase-7 Activation

  • Jung, Eun Joo;Kim, Deok Ryong
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.12-17
    • /
    • 2008
  • The TrkA tyrosine kinase is activated by autophosphorylation in response to NGF, and plays an important role in cell survival, differentiation, and apoptosis. To investigate its role in cell fate determination, we produced stable TrkA-inducible SK-N-MC and U2OS cell lines using the Tet-On system. Interestingly, TrkA overexpression induced substantial cell death even in the absence of NGF, by stimulating ERK phosphorylation and caspase-7 activation leading to PARP cleavage. TrkA-mediated cell death was shown by the annexin-V binding assay to be, at least in part, apoptotic in both SK-N-MC and U2OS cells. Furthermore, the truncated form (p18) of Bax accumulated in the TrkA-induced cells, suggesting that TrkA induces mitochondria-mediated apoptosis. NGF treatment augmented the cell death induced by TrkA overexpression. This TrkA-induced cell death was blocked by the tyrosine kinase inhibitors, K-252a and GW441756. Moreover, TrkA overexpression inhibited long-term proliferation of both the neuronal SK-N-MC cells and the non-neuronal U2OS cells, suggesting a potential role of TrkA as a tumor suppressor.

Short-term activation of synaptic transmission by acute KCl application significantly reduces somatic A-type K+ current

  • Song, Jung-Yop;Kim, Hye-Ji;Jung, Sung-Cherl;Kang, Moon-Seok
    • Journal of Medicine and Life Science
    • /
    • 제15권2호
    • /
    • pp.62-66
    • /
    • 2018
  • A-type $K^+$ ($I_A$) channels are transiently activated in the suprathreshold membrane potential and then rapidly inactivated. These channels play roles to control the neuronal excitability in pyramidal neurons in hippocampi. We here electrophysiologically tested if regulatory functions of $I_A$ channels might be targeted by acute activation of glutamatergic synaptic transmission in cultured hippocampal neurons(DIV 6~8). The application of high KCl in recording solutions(10 mM, 2 min) to increase presynaptic glutamate release, significantly reduced the peak of somatic $I_A$ without changes of gating kinetics. This indicates that neuronal excitation induced by the enhancement of synaptic transmission may process with distinctive signaling cascades to affect voltage-dependent ion channels in hippocampal neurons. Therefore, it is possible that short-lasting enhancement of synaptic transmission is functionally restricted in local synapses without effects on intracellular signaling cascades affecting a whole neuron, efficiently and rapidly enhancing synaptic functions in hippocampal network.

황납추출물이 도파민세포 보호효과 및 파킨슨병 행동장애에 미치는 영향 (Cera Flava Improves Behavioral and Dopaminergic Neuronal Activities in a Mouse Model of Parkinson's Disease)

  • 임혜선;문병철;박건혁
    • 한국환경과학회지
    • /
    • 제31권5호
    • /
    • pp.423-429
    • /
    • 2022
  • Parkinson's Disease (PD) is a chronic neurodegenerative disorder caused by the progressive loss of dopaminergic neurons, leading to decreased dopamine levels in the midbrain. Although the specific etiology of PD is not yet known, oxidative stress, inflammation, and subsequent apoptosis have been proposed to be closely related to PD pathophysiology. Cera Flava (CF) is a natural extract obtained from beehives and is isolated through the heating, compression, filtration, and purification of beehives. CF has been used in traditional medicines for its various clinical and pharmacological effects. However, its effects on neurodegenerative diseases are unknown. Therefore, we investigated the effects of CF against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and explored the underlying mechanism of action. In MPTP-induced PC12 cells, CF protected NADH dehydrogenase activity and inhibited lactate dehydrogenase. In the mouse model, CF promoted recovery from movement impairments, prevented dopamine depletion, and protected against MPTP-induced dopaminergic neuronal degradation. Moreover, CF downregulated glial and microglial activation. Taken together, our results suggest that CF improves behavioral impairments and protects against dopamine depletion in MPTP-induced toxicity by inhibiting glial and microglial activation.

Role of p38 MAPK in the Regulation of Apoptosis Signaling Induced by TNF-α in Differentiated PC12 Cells

  • Park, Jung-Gyu;Yuk, Youn-Jung;Rhim, Hye-When;Yi, Seh-Yoon;Yoo, Young-Sook
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.267-272
    • /
    • 2002
  • TNF-$\alpha$ elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-$\alpha$ induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-$\alpha$. TNF-$\alpha$ initiates various signal transduction pathways leading to the activation of the caspase family, NF-${\kappa}B$, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-$\alpha$ receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-$\alpha$. This implies that the induction of anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-$\alpha$. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-$\alpha$ in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-$\alpha$ slowly increased and lasted several hours in the PC12 cell and DRG neuron. This specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-$\alpha$ in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in resoonse to TNF-$\alpha$ in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.