• Title/Summary/Keyword: Neuronal Differentiation

Search Result 215, Processing Time 0.026 seconds

Regulation of Nicotinic Acetylcholine Receptor by Tyrosine Kinase in Autonomic Major Pelvic Ganglion Neurons

  • Kim, Dae-Ran;Ahn, Sung-Wan;Park, Kyu-Sang;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • It is widely known that protein tyrosine kinases (PTKs) are involved in controlling many biological processes such as cell growth, differentiation, proliferation, survival and apoptosis. An $\alpha3\beta4$ subunit combination acts as a major functional acetylcholine receptor (nAChRs) in male rat major pelvic ganglion (MPG) neurons, and their activation induces fast inward currents and intracellular calcium increases. Recently it has been reported that the activity of acetylcholine receptors (AChRs) in some neurons can be negatively regulated by PTKs. However, the exact mechanism of regulation of nAChRs by PTKs is poorly understood. Therefore, we examined the potential role particular in nAChR by PTK using electrophysiology and calcium imaging in male rat MPG neurons. ACh induced inward currents and $(Ca^{2+})_i$ increases in MPG neurons, concomitantly. These responses were inhibited by more than 90% in $Na^+$- or $Ca^{2+}$- free solution. $\alpha$-conotoxin AuIB, a selective $\alpha3\beta4$ nAChR blocket, inhibited ACh-induced inward currents. Genistein (10 $\mu$M), a broad-spectrum tyrosine kinase inhibitor, markedly decreased ACh-induced currents and $Ca^{2+}$ transients, whereas 10 $\mu$M genistin, an inactive analogue, had little effect. Overall these data suggest that the activities of $\alpha3\beta4$ AChRs in MPG neurons are positively regulated by PTK. In conclusion, trosine kinase may be one of the key factors in the regulation of $\alpha3\beta4$ nAChRs in rat MPG neurons, which may play an important roles in the autonomic neuronal function such as synaptic transmission, autonomic reflex, and neuronal plasticity.

  • PDF

Screening of Potential Compounds Promoting BDNF Production in Noradrenergic Locus Coeruleus Neurons (노르아드레날린성 신경세포에서의 BDNF 생산 증진 물질 탐색)

  • 전홍성
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.207-210
    • /
    • 2003
  • The locus coeruleus (LC) contains about half of the total number of noradrenergic neurons in the brain and those noradrenergic neurons from the LC innervate entire brain regions. The LC is a major common target region in several neurodegenerative disorders such as Alzheimer's, Pakinson's and Huntington's diseases. The brain-derived neurotrophic factor (BDNF) regulate neuronal cell survival and differentiation of central nervous system neurons, including LC noradrenergic neurons. In this study, various small molecules and growth factors were tested as candidates to promote the production of BDNF in LC noradrenergic neuronal cells. The molecules tested include neuropeptides, cytokines, growth factors, neurotransmitters, and intracellular signaling agents. Four small molecules or growth factors, FGF8b, BMP-4, forskolin, and dibutyryl cGMP, were found to increase the release of BDNF in LC noradrenergic neurons. Especially, BMP-4 significantly enhanced BDNF production over 2.5-fold in LC noradrenergic neurons.

Gateway RFP-Fusion Vectors for High Throughput Functional Analysis of Genes

  • Park, Jae-Yong;Hwang, Eun Mi;Park, Nammi;Kim, Eunju;Kim, Dong-Gyu;Kang, Dawon;Han, Jaehee;Choi, Wan Sung;Ryu, Pan-Dong;Hong, Seong-Geun
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.357-362
    • /
    • 2007
  • There is an increasing demand for high throughput (HTP) methods for gene analysis on a genome-wide scale. However, the current repertoire of HTP detection methodologies allows only a limited range of cellular phenotypes to be studied. We have constructed two HTP-optimized expression vectors generated from the red fluorescent reporter protein (RFP) gene. These vectors produce RFP-tagged target proteins in a multiple expression system using gateway cloning technology (GCT). The RFP tag was fused with the cloned genes, thereby allowing us localize the expressed proteins in mammalian cells. The effectiveness of the vectors was evaluated using an HTP-screening system. Sixty representative human C2 domains were tagged with RFP and overexpressed in HiB5 neuronal progenitor cells, and we studied in detail two C2 domains that promoted the neuronal differentiation of HiB5 cells. Our results show that the two vectors developed in this study are useful for functional gene analysis using an HTP-screening system on a genome-wide scale.

Effects of Eucomiae Cortex on the Depression of Male Aged Mice (두충(杜沖)이 수컷 노화쥐의 우울증에 미치는 효과)

  • Kim, Ho Hyun;Ahn, Sang Hyun;Park, Sun Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • In order to investigate the effects of Eucomiae Cortex extracts on the depression caused by aging, histochemistry and immunohistochemistry were performed on the hippocampus of aged rats and the following results were obtained. Experimental animals were divided into three groups as follows: 8 week old ICR male mice, Aging-elicited group (AE group) and Eucomiae Cortex treatment group (EC group) 50 week old male ICR mice were used. The control group and AE group did not take any treatment and did not restrict diets and negatives. In the EC group, 0.51g/kg of Eucomiae Cortex extract was dissolved in distilled water once a day for 6 months. The Eucomiae Cortex extract reduced pyramidal neuronal damage in C3 hippocampus and dentate gyrus, increased DJ-1, SHH positive responses in aged mouse hippocampus, and 8-OHdG positivity was reduced, ${\beta}$-endorphin positivity was reduced in aged mouse substantia nigra. Therefore, based on the above results, Eucomiae Cortex extract reduces damage of pyramidal neurons in the hippocampus caused by aging, inhibits neuronal cell death, induces proliferation and differentiation of stem cells in the hippocampus, reduces DNA damage-induced oxidative stress, so improves the reduction of hippocampus volume. It is also thought to improves depression due to aging through ${\beta}$-endorphin which enhances mood through the inhibition of pain.

Alpha-Synuclein Inclusion Formation in Human Oligodendrocytes

  • Yoon, Ye-Seul;Ahn, Woo Jung;Ricarte, Diadem;Ortiz, Darlene;Shin, Chan Young;Lee, Seung-Jae;Lee, He-Jin
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.83-89
    • /
    • 2021
  • Multiple system atrophy (MSA) is a neurodegenerative disease characterized by presence of α-synuclein-positive inclusions in the cytoplasm of oligodendrocytes. These glial cytoplasmic inclusions (GCIs) are considered an integral part of the pathogenesis of MSA, leading to demyelination and neuronal demise. What is most puzzling in the research fields of GCIs is the origin of α-synuclein aggregates in GCIs, since adult oligodendrocytes do not express high levels of α-synuclein. The most recent leading hypothesis is that GCIs form via transfer and accumulation of α-synuclein from neurons to oligodendrocytes. However, studies regarding this subject are limited due to the absence of proper human cell models, to demonstrate the entry and accumulation of neuronal α-synuclein in human oligodendrocytes. Here, we generated mature human oligodendrocytes that can take up neuronderived α-synuclein and form GCI-like inclusions. Mature human oligodendrocytes are derived from neural stem cells via "oligosphere" formation and then into oligodendrocytes, treating the cells with the proper differentiation factors at each step. In the final cell preparations, oligodendrocytes consist of the majority population, while some astrocytes and unidentified stem cell-like cells were present as well. When these cells were exposed to α-synuclein proteins secreted from neuron-like human neuroblastoma cells, oligodendrocytes developed perinuclear inclusion bodies with α-synuclein immunoreactivity, resembling GCIs, while the stem cell-like cells showed α-synuclein-positive, scattered puncta in the cytoplasm. In conclusion, we have established a human oligodendrocyte model for the study of GCI formation, and the characterization and use of this model might pave the way for understanding the pathogenesis of MSA.

Oxidative stress-induced aberrant G9a activation disturbs RE-1-containing neuron-specific genes expression, leading to degeneration in human SH-SY5Y neuroblastoma cells

  • Kim, Ho-Tae;Ohn, Takbum;Jeong, Sin-Gu;Song, Anji;Jang, Chul Ho;Cho, Gwang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

Minoxidil Regulates Aging-Like Phenotypes in Rat Cortical Astrocytes In Vitro

  • Minji Bang;Seung Jin Yang;TaeJin Ahn;Seol-Heui Han;Chan Young Shin;Kyoung Ja Kwon
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.116-126
    • /
    • 2023
  • Mainly due to the slanted focus on the mechanism and regulation of neuronal aging, research on astrocyte aging and its modulation during brain aging is scarce. In this study, we established aged astrocyte culture model by long-term culturing. Cellular senescence was confirmed through SA-β-gal staining as well as through the examination of morphological, molecular, and functional markers. RNA sequencing and functional analysis of astrocytes were performed to further investigate the detailed characteristics of the aged astrocyte model. Along with aged phenotypes, decreased astrocytic proliferation, migration, mitochondrial energetic function and support for neuronal survival and differentiation has been observed in aged astrocytes. In addition, increased expression of cytokines and chemokine-related factors including plasminogen activator inhibitor -1 (PAI-1) was observed in aged astrocytes. Using the RNA sequencing results, we searched potential drugs that can normalize the dysregulated gene expression pattern observed in long-term cultured aged astrocytes. Among several candidates, minoxidil, a pyrimidine-derived anti-hypertensive and anti-pattern hair loss drug, normalized the increased number of SA-β-gal positive cells and nuclear size in aged astrocytes. In addition, minoxidil restored up-regulated activity of PAI-1 and increased mitochondrial superoxide production in aged astrocytes. We concluded that long term culture of astrocytes can be used as a reliable model for the study of astrocyte senescence and minoxidil can be a plausible candidate for the regulation of brain aging.

BRI3 associates with SCG10 and attenuates NGF-induced neurite outgrowth in PC12 cells

  • Gong, Yanhua;Wu, Jing;Qiang, Hua;Liu, Ben;Chi, Zhikai;Chen, Tao;Yin, Bin;Peng, Xiaozhong;Yuan, Jiangang
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.

Ginsenosides Rb1 and Rg1 Decrease Proliferation but Increase Neuronal Differentiation of Hippocampal Neural Progenitor Cells (진세노사이드 Rb1과 Rg1에 의한 해마 신경전구세포의 분화 증가)

  • Yoon, Young-Ju;Lee, Jun-Seok;Kim, Young-Sook;Yang, Byung-Hwan;Son, Hyeon
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.169-175
    • /
    • 2006
  • Ginseng is the best known and most popular herbal medicine used worldwide. In spite of reported beneficial effects of ginseng on the CNS, there is few scientific evidences established at the cellular level. Among more than 30 ginsenosides, Rb1 and Rg1, the active ingredients of ginseng, are regarded as the main compounds responsible for many pharmaceutical actions of ginseng. Daily treatment with Rb1 or Rg1 for 3 d significantly decreased the number of bromodeoxyuridine(BrdU)(+) cells in primary neural progenitor cells(NPCs) isolated from hippocampi at embryonic day 16.5(E16.5). In contrast, treatment with Rb1 or Rg1 greatly increased the number of microtubule associated protein(MAP2) (+) cells. In addition, the transcription factors, Ngn1 and Hes1, proneural members of the basic helix-loop-helix(bHLH) family, significantly increased in Rb1 or Rg1 treated-NPCs. Based on these results, we suggest for the first time that ginsenosides Rb1 and Rg1 decrease proliferation but promote neuronal differentiation of hippocampal NPCs.

  • PDF

In Vitro Expansion of Homogeneous Neural Precursor Cells Derived from Human Embryonic Stem Cells

  • Na, Deuk-Chae;Kim, Se-Hee;Choi, Won-Ik;Hwang, Hyun-Jin;Han, In-Bo;Kim, Jae-Hwan;Park, Keun-Hong;Chung, Hyung-Min;Choi, Seong-Jun
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.267-272
    • /
    • 2007
  • Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and have the capacity to differentiate into various types of cells in the body. Hence, these cells may potentially be an indefinite source of cells for cell therapy in various degenerative diseases including neuronal disorders. For clinical applications of human ES cells, directed differentiation of these cells would be necessary. The objective of this study is to develop the culture condition for the expansion of neural precursor cells derived from human ES cells. Human ES cells were able to differentiate into neural precursor cells upon a stepwise culture condition. Neural precursor cells were propagated up to 5000-fold in cell numbers over 12-week period of culture and evaluated for their characteristics. Expressions of sox1 and pax6 transcripts were dramatically up-regulated along the differentiation stages by RT-PCR analysis. In contrast, expressions of oct4 and nanog transcripts were completely disappeared in neural precursor cells. Expressions of nestin, pax6 and sox1 were also confirmed in neural precursor cells by immunocytochemical analysis. Upon differentiation, the expanded neural precursor cells differentiated into neurons, astrocytes, and oligodendrocytes. In immunocytochemical analysis, expressions of type III ${\beta}$-tubulin and MAP2ab were observed Presence of astrocytes and oligodendrocytes were also confirmed by expressions of GFAP and O4, respectively. Results of this study demonstrate the feasibility of long-term expansion of human ES cell-derived neural precursor cells in vitro, which can be a potential source of the cells for the treatment of neurodegenerative disorders.