• Title/Summary/Keyword: Neuronal

Search Result 2,027, Processing Time 0.029 seconds

Effect of Acupuncture on 6-Hydroxydopamine-induced Nigrostriatal Dopaminergic Neuronal Cell Death in Rats

  • Kim, Yeung-Kee;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.98-107
    • /
    • 2005
  • Objectives: Acupuncture treatment has been clinically used for functional recovery in Parkinson's disease. In the present study, we investigated the effect of acupuncture at Zusanli (ST36) on nigrostriatal dopaminergic neuronal cell death in rats. Methods: A Parkinson's disease model was induced by the unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum. Acupuncture treatment was performed at Zusanli (ST36) and at the hip, as a non-acupoint, once a day for 14 days. Two weeks after 6-0HDA injection, an apomorphine-induced rotational behavior test showed significant rotational asymmetry in rats with Parkinson's disease. Immunostaining for tyrosine hydroxylase demonstrated a dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. Results: Acupuncture at the ST36 acupoint significantly inhibited rotational asymmetry in rats with Parkinson's disease, and also protected against 6-OHDA-induced nigrostriatal dopaminergic neuronal loss. These effects of acupuncture were not observed for non-acupoint acupuncture. Conclusions: The present study shows that acupuncture treatment, especially at the ST36 acupoint, can be used as a useful strategy for the treatment of Parkinson's disease.

  • PDF

Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception

  • Choi, Seung-In;Hwang, Sun Wook
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.255-267
    • /
    • 2018
  • Inflammation is one of the main causes of pathologic pain. Knowledge of the molecular links between inflammatory signals and pain-mediating neuronal signals is essential for understanding the mechanisms behind pain exacerbation. Some inflammatory mediators directly modulate the excitability of pain-mediating neurons by contacting the receptor molecules expressed in those neurons. For decades, many discoveries have accumulated regarding intraneuronal signals from receptor activation through electrical depolarization for bradykinin, a major inflammatory mediator that is able to both excite and sensitize pain-mediating nociceptor neurons. Here, we focus on the final effectors of depolarization, the neuronal ion channels, whose functionalities are specifically affected by bradykinin stimulation. Particular G-protein coupled signaling cascades specialized for each specific depolarizer ion channels are summarized. Some of these ion channels not only serve as downstream effectors but also play critical roles in relaying specific pain modalities such as thermal or mechanical pain. Accordingly, specific pain phenotypes altered by bradykinin stimulation are also discussed. Some members of the effector ion channels are both activated and sensitized by bradykinin-induced neuronal signaling, while others only sensitized or inhibited, which are also introduced. The present overview of the effect of bradykinin on nociceptor neuronal excitability at the molecular level may contribute to better understanding of an important aspect of inflammatory pain and help future design of further research on the components involved and pain modulating strategies.

Glial Mechanisms of Neuropathic Pain and Emerging Interventions

  • Jo, Daehyun;Chapman, C. Richard;Light, Alan R.
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Neuropathic pain is often refractory to intervention because of the complex etiology and an incomplete understanding of the mechanisms behind this type of pain. Glial cells, specifically microglia and astrocytes, are powerful modulators of pain and new targets of drug development for neuropathic pain. Glial activation could be the driving force behind chronic pain, maintaining the noxious signal transmission even after the original injury has healed. Glia express chemokine, purinergic, toll-like, glutaminergic and other receptors that enable them to respond to neural signals, and they can modulate neuronal synaptic function and neuronal excitability. Nerve injury upregulates multiple receptors in spinal microglia and astrocytes. Microglia influence neuronal communication by producing inflammatory products at the synapse, as do astrocytes because they completely encapsulate synapses and are in close contact with neuronal somas through gap junctions. Glia are the main source of inflammatory mediators in the central nervous system. New therapeutic strategies for neuropathic pain are emerging such as targeting the glial cells, novel pharmacologic approaches and gene therapy. Drugs targeting microglia and astrocytes, cytokine production, and neural structures including dorsal root ganglion are now under study, as is gene therapy. Isoform-specific inhibition will minimize the side effects produced by blocking all glia with a general inhibitor. Enhancing the anti-inflammatory cytokines could prove more beneficial than administering proinflammatory cytokine antagonists that block glial activation systemically. Research on therapeutic gene transfer to the central nervous system is underway, although obstacles prevent immediate clinical application.

Pre-ischemic Treatment with Ampicillin Reduces Neuronal Damage in the Mouse Hippocampus and Neostriatum after Transient Forebrain Ischemia

  • Lee, Kyung-Eon;Kim, Seul-Ki;Cho, Kyung-Ok;Kim, Seong-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.287-291
    • /
    • 2008
  • Ampicillin, a $\beta$-lactam antibiotic, has been reported to induce astrocytic glutamate transporter-l which plays a crucial role in protecting neurons against glutamate excitotoxicity. We investigated the effect of ampicillin on neuronal damage in the mouse hippocampus and neostriatum following transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery for 40 min. Ampicillin was administered post-ischemically (for 3 days) and/or pre-ischemically (for $3{\sim}5$ days until one day before the onset of ischemia). Pre- and post-ischemic treatment with ampicillin (50 mg/kg/day or 200 mg/kg/day) prevented ischemic neuronal death in the medial CAI area of the hippocampus as well as the neostriatum in a dose-dependent manner. In addition, ischemic neuronal damage was reduced by pre-ischemic treatment with ampicillin (200 mg/kg/day). In summary, our results suggest that ampicillin plays a functional role as a chemical preconditioning agent that protects hippocampal neurons from ischemic insult.

Glutamate-induced Modulation of $Ca^{2+}$/Calmodulin-dependent Protein Kinase IV in Cultured Rat Cortical Neurons (배양 대뇌피질 신경세포에서 glutamate에 의한 $Ca^{2+}$/calmodulin-dependent protein kinase IV의 활성변화)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.419-425
    • /
    • 2001
  • The neuronal cell death induced by excess glutamate (Glu) has been implicated in many acute and chronic neurodegenerative diseases including cerebral ischemia. Glu-induced elevation of intra-cellular $Ca^{2+}$ plays a critical role in the excitotoxicity, partly through the activation of a variety of $Ca^{2+}$ dependent enzymes. In the present study, we investigated the Glu-induced modulation of $Ca^{2+}$/calmodulin-dependent protein kinase IV (CaMK IV), a multifunctional enzyme abundantly present in the nuclei of neurons. The exposure of cultured rat cortical neurons to $100{\mu}$M Glu for 3 min dramatically increased CaMK IV activity up to 4.5-fold of the control-treated enzyme activity. The activation was very rapid, reaching peak at 3 min and then declined gradually. Under the same experimental conditions, time-dependent acute and delayed neuronal cell death was observed. Immunoblot analyses using specific antibodies showed that the expressions of CaMK IV and $CaMKK_{\alpha}$ were time-dependently modulated by Glu. Taken together, these results imply that the modulation of CaMK IV activity by Glu may be involved in the cascade of events resulting in neuronal cell death in cortical cultures.

  • PDF

Suppression of Reactive Oxygen Species Production by Water-extracts of Coptidis Rhizoma Enhances Neuronal Survival in a Hypoxic Model of Cultured Rat Cortical Cells. (흰쥐 대뇌세포의 저산소증 모델에서 황련의 활성산소 생성 억제와 신경세포사 억제)

  • Choi, Ju-Li;Shin, Gil-Jo;Lee, Won-Chul;Moon, Il-Soo;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.311-317
    • /
    • 2008
  • Pathophysiological oxidative stress results in neuronal cell death mainly due to the generation reactive oxygen species (ROS). In low oxygen situation such as hypoxia and ischemia, excessive ROS is generated. Coptidis Rhizoma (CR) is a traditional medicine used for the incipient stroke. In this report we show that CR water extracts $(1\;{\mu}g/ml)$ exhibited protective effects of neuronal cell death in a hypoxic model (2% $O_2/5%\;CO_2,\;37^{\circ}C,$ 3 hr) of cultured rat cortical cells. We further show that CR water extracts significantly reduced the intensity of green fluorescence after staining with $H_2DCF-DA$ on one hour and three days after hypoxic shock and in normoxia as well. Our results indicate that CR water extracts prevent neuronal death by suppressing ROS generation.

Spontaneous Firing Characteristics of Cardiovascular Neurons in the Rostral Ventrolateral Medulla During Somatosympathetic Reflex : II. Minimal Neuronal Model (상부복외측 연수 심혈관계 세포의 체성교감반사시 자발적 흥분발사특성 분석 : I. 실험적 연구)

  • 차은종;구용숙;이태수
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • A number of experimental evidences suggest that the rnun ventrolateral medulla(RVLM) is the final common pathway in the regulation of arterial blood pressure. A Voup of neurons in the RVLM, called the cardiovascular neurons (UN), show spontaneous activity temporally synchronized with the periodic cardiac cycle. These neurons affect the sympathetic nerve discharge(SND), thus are believed to be responsible for blood pressure control. The present experiment identified 98 UVNs in 42 cats based on the temporal relationships between each neuron's activity with both the cardiac cycle and SWD. In 20 UWL changes of spontaneous firing rate(FR) during the somatosympathetic reflex(SSR) were studied Five different firing patterns were observed during the pressor and depressor responses of SSR, implying that they form an interconnected neuronal circuit interacting with one another to generate efferent signals for blood pressure regulation. In the following companion paper, the firing patterns of CVN are analyzed to develop a minimal neuronal circuit model explaining the present experimental outcome.

  • PDF

Effect of Electroacupuncture Stimulation on Activity of Neuronal NOS in Rats (흰쥐의 neuronal NOS 신경세포의 activity에 대한 전침자극 효과)

  • Kim, Hoo-Dong;Nam, Sang-Soo;Kim, Chang-Hwan
    • Journal of Acupuncture Research
    • /
    • v.23 no.5
    • /
    • pp.199-206
    • /
    • 2006
  • Objectives : The aim of this study was to investigate the effect of various electroacupuncture stimulation on neuronal nitric oxide synthase(nNOS) in cerebral cortex, brain stem, cerebellum of spontaneously hypertensive rats. Methods : We evaluated the changes of nNOS-positive neurons using a immunohistochemical method. The staining intensity of nNOS positive neurons was assessed in a quantitative fashion using a microdensitometrical method based on optical density by means of an image analyzer. Results : The average optical density of nNOS-positive neurons of 100 Hz (bipolar square wave 0.2 ms duration and 100 Hz frequency) electroacupuncture treatment group significantly decreased in most cortical areas comparison between the manual acupuncture and 2 Hz (bipolar square wave 0.2 ms duration and 2 Hz frequency) electroacupuncture groups. In the brain stem, the optical density of nNOS-positive neuron at superficial gray layer of the superior colliculus area, dorsolateral periaqueductal gray area and paralemniscal nucleus were same as cerebral cortex. Conclusion : We conclude that the morphological evidence for nNOS-positive neurons may be have regional change in cerebral cortex brain stem and cerebellum according to various electroacupuncture stimulations.

  • PDF

Antioxidant and Neuroprotective Effects of Hesperidin and its Aglycone Hesperetin

  • Cho, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.699-706
    • /
    • 2006
  • The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by $H_2O_2$ or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the $A_{{\beta}(25-35)}-induced$ neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

Inhibitory Effects of Xiaoshuan Zaizao Wan on Excitotoxic and Oxidative Neuronal Damage Induced in Primary Cultured Rat Cortical Cells (일차 배양한 흰쥐 대뇌피질세포의 흥분성 및 산화적 신경세포손상에 대한 소전재조환의 억제효과)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.369-375
    • /
    • 2003
  • Xiaoshuan Zaizao Wan (XZW) has been used in China to improve hemiplegia, deviation of eye and mouth, and dysphasia due to cerebral thrombosis. To characterize pharmacological actions of XZW, we evaluated its effects on neuronal cell damage induced in primary cultured rat cortical cells by various oxidative insults, glutamate or N-methyl-D-aspartate (NMDA), and $\beta$-amyloid fragment ($A_{\beta(25-35)}$). XZW was found to inhibit the oxidative neuronal damage induced by $H_2O_2$, xanthine/xanthine oxidase, or $Fe^{2+}$/ascorbic acid. It also attenuated the excitotoxic damage induced by glutamate or NMDA. The NMDA-induced neurotoxicity was more effectively inhibited than the glutamate-induced toxicity. In addition, we found that XZW protected neurons against the $A_{\beta(25-35)}$-induced toxicity. Moreover; XZW exhibited dramatic inhibition of lipid peroxidation in rat brain homogenates and mild 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together; these results demonstrate that XZW exerts neuroprotective effects against oxidative, excitotoxic, or $A_{\beta(25-35)}$-induced neuronal damage. These findings may provide pharmacological basis for its clinical usage treating the sequelae caused by cerebral thrombosis. Furthermore, XZW may exert beneficial effects on Alzheimer's disease and other oxidative stress-related neurodegenerative disorders.