• Title/Summary/Keyword: NeuroIS

Search Result 991, Processing Time 0.034 seconds

Management of Meralgia Paresthetica by Lateral Femoral Cutaneous Nerve Block -Case reports- (대퇴신경지각이상증의 치료를 위한 외측대퇴피신경차단 -증례보고-)

  • Lee, Hyo-Keun;Chung, So-Young;Lee, Seong-Yeon;Suh, Young-Sun;Kim, Chan
    • The Korean Journal of Pain
    • /
    • v.8 no.1
    • /
    • pp.152-155
    • /
    • 1995
  • Meralgia paresthetica is a disorder characterized by a pain or dysaesthesia, or both, in the anterolateral aspect of the thigh caused by entrapment or neurinoma formation of the lateral femoral cutaneous nerve. Currently available modes of therapy include conservative treatment, lateral femoral cutaneous nerve block with steroids and local anesthetics, and surgery. At our neuro-pain clinic, w recently encountered three cases of meralgia paresthetica, all of which were treated by lateral femoral cutaneous nerve block. In which of them, two cases were successfully treated but one case was associate with pain relapse due to entrapment of lateral femoral cutaneous nerve by a retroperitoneal mass, schwannoma. In this paper we report our experience along with a review of the current literatures.

  • PDF

Neuro-Fuzzy Systems: Theory and Applications

  • Lee, C.S. George
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.29.1-29
    • /
    • 2001
  • Neuro-fuzzy systems are multi-layered connectionist networks that realize the elements and functions of traditional fuzzy logic control/decision systems. A trained neuro-fuzzy system is isomorphic to a fuzzy logic system, and fuzzy IF-THEN rule knowledge can be explicitly extracted from the network. This talk presents a brief introduction to self-adaptive neuro-fuzzy systems and addresses some recent research results and applications. Most of the existing neuro-fuzzy systems exhibit several major drawbacks that lead to performance degradation. These drawbacks are the curse of dimensionality (i.e., fuzzy rule explosion), inability to re-structure their internal nodes in a changing environment, and their lack of ability to extract knowledge from a given set of training data. This talk focuses on our investigation of network architectures, self-adaptation algorithms, and efficient learning algorithms that will enable existing neuro-fuzzy systems to self-adapt themselves in an unstructured and uncertain environment.

  • PDF

Adaptive Active Noise Control Using Neuro-Fuzzy Controller (뉴로-퍼지제어기를 이용한 적응 능동소음제어)

  • Kim, Jong-Woo;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2879-2881
    • /
    • 1999
  • This paper presents the adaptive Active Noise Control(ANC) system using the Neuro-Fuzzy controller. In general, the character of noise is time-varing and nonlinear Thus controller must have the adaptivness so that applied in Active Noise Control system to cancel the noise. This paper propose the Neuro-Fuzzy controller trained with back-propagation teaming algorithm to optimize the parameters of controller The objects of this paper are cancel the noise, extract the original(speech) signal polluted by noise and design the Neuro-Fuzzy controller.

  • PDF

A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 유압서보시스템의 추적제어)

  • Park, Geun-Seok;Lim, Jun-Young;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.509-517
    • /
    • 2001
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require and accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is evaluated through a series of experiments for the various types of inputs while applying disturbances to the hydraulic system. The performance of this controller was compared with those of PID and PD controllers. From these results, We observe be said that the position tracking performance of neuro-fuzzy is better those of PID and PD controllers.

  • PDF

A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 유압서보시스뎀의 추적제어)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.228-228
    • /
    • 2000
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require an accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller Parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is obtained through a series of experiments for the various types of input while applying disturbances to the cylinder. .and performance of this controller was compared with that of PID, PD controller. As a experimental result, it can be proven that the position tracking performance of the neuro-fuzzy is better than that of PID and PD controller.

  • PDF

The Robust Control of Robot Manipulator using Adaptive-Neuro Control Method (적응-뉴럴 제어 기법에 의한 로보트 매니퓰레이터의 견실 제어)

  • 차보남;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.262-266
    • /
    • 1995
  • This paper presents a new adaptive-neuro control scheme to control the velocity and position of SCARA robot with parameter uncertainties. The adaptive control of linear system found wiedly in many areas of control application. While techniques for the adaptive control of linear systems have been well-established in the literature, there are a few corresponding techniques for nonlinear systems. In this paper an attempt is made to present a newcontrol scheme for theadaptive control of ponlinear robot based on a feedforward neural network. The proposed approach incorporates a neuro controller used within a reinforcement learning framework, which reduces the problem to one of learning a stochastic approximation of an unknown average error surface Emphasis is focused on the fact that the adaptive-neuro controoler dose not need any input/output information about the controlled system. The simulation result illustrates the effectiveness of the proposed adaptive-neuro control scheme.

  • PDF

Median Nerve Block for Treatment of Carpal Tunnel Syndrome -Report of 5 cases- (수근관 증후군 환자에서의 정중 신경차단 -5예 보고-)

  • Jung, Pyung-Sik;Lee, Hyo-Kun;Kim, Soon-Yul;Yoon, Kyung-Bong;Kim, Chan
    • The Korean Journal of Pain
    • /
    • v.7 no.1
    • /
    • pp.65-68
    • /
    • 1994
  • Carpal tunnel syndrome is the most common compressive neuropathy of the upper extremity. Clinical manifestations include pain as well as motor and sensory dysfunction in the distribution of the median nerve. As nonoperative treatment, median nerve block is performed to relieve pain for carpal tunnel syndrome. We have experienced 5 such cases. Our results support median nerve block as an excellent treatment for carpal tunnel syndrome.

  • PDF

Design of a Neuro-Fuzzy Observer for Speed-Sensorless Control of DC Servo Motor (직류 서보 전동기 센서리스 속도제어를 위한 뉴로-퍼지 관측기 설계)

  • Ahn, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.129-135
    • /
    • 2007
  • This paper deals with speed-sensorless control of DC servo motor using Neuro-Fuzzy Observer. DC servo motor has very low rotor inertia and excellent response characteristic and it is very useful to control torque and speed. It is easy to detect the voltage and current and resolver or encoder is used to measure a rotor speed. But it has a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve this problem, it is studied to detect a speed of DC servo motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this paper, the gain of the observer is properly set up using the Neuro-Fuzzy control and Neuro-Fuzzy Observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. It calculates the differentiation of the rotor current directly using the rotor current measured in the DC servo motor and estimates the speed of the rotor using the differentiation. Proposed speed sensorless control method is performed using the estimated speed. Also, it is proved feasibility of the proposed observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200[w] DC servo motor starting system.

Neuro-Fuzzy Controller Design for Boiler-Turbine System (보일러-터빈 시스템을 위한 뉴로-퍼지 지능제어기 설계)

  • Jo, Kyoung-Wan;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.474-476
    • /
    • 1998
  • In this paper, a multi variable neuro-fuzzy controller for a boiler-turbine system is designed. Two architectures are used. The first consists of boiler-turbine system identification and the second is designing a controller. A generalized backpropagation algorithm is developed and used to train the neuro-fuzzy controller. Designed controller is good tracking property and rejects the input and output disturbances. The results of the proposed design method is verified through simulation.

  • PDF

Adaptive Multi-mode Vibration Control of Composite Beams Using Neuro-Controller (신경망 제어기를 이용한 복합재 보의 다중 모드 적응 진동 제어)

  • Yang, Seung-Man;Rew, Keun-Ho;Youn, Se-Hyun;Lee, In
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.39-46
    • /
    • 2001
  • Experimental studies on the adaptive multi-mode vibration control of composite beams have been performed using neuro-controller. Neuro-controllers require too much computational burden, which blocks wide real-time applications of neuro-controllers. Therefore, in this paper, an adaptive notch filter is proposed to separate a vibration signal into each modal vibration signal. Two neuro-controllers with fewer weights are connected to the corresponding modal signals to generate proper modal control forces. The vibration controls using the adaptive notch filter and neuro-controllers have been performed for two specimens. A and B, which have different natural frequencies because of different positions of tip masses. Significant vibration reduction has been observed in both cases. The vibration control results show that the present neuro-controller has good adaptiveness under the system parameter variations.

  • PDF