• Title/Summary/Keyword: Neuro-fuzzy Systems

검색결과 213건 처리시간 0.028초

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • 제5권6호
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF

PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화 (Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization)

  • 김승석;김용태;김주식;전병석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

적응 뉴로 퍼지추론 기법에 의한 비선형 시스템의 구조 동정에 관한 연구 (Structure Identification of Nonlinear System Using Adaptive Neuro-Fuzzy Inference Technique)

  • 이준탁;정형환;심영진;김형배;박영식
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.298-301
    • /
    • 1996
  • This paper describes the structure Identification of nonlinear function using Adaptive Neuro-Fuzzy Inference Technique(ANFIS). Nonlinear mapping relationship between inputs and outputs were modeled by Sugeno-Takaki's Fuzzy Inference Method. Specially, the consequent parts were identified using a series of 1st order equations and the antecedent parts using triangular type membership function or bell type ones. According to learning Rules of ANFIS, adjustable parameters were converged rapidly and accurately.

  • PDF

Stabilized Control of Inverted Pendulum System by ANFIS

  • Lee, Joon-Tark;Lee, Oh-Keol;Shim, Young-Zin;Chung, Hyeng-Hwan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.691-695
    • /
    • 1998
  • Most of systems has nonlinearity . And also accurate modelings of these uncertain nonlinear systems are very difficult. In this paper, a fuzzy modeling technique for the stabilization control of an IP(inverted pendulum) system with nonlinearity was proposed. The fuzzy modeling was acquired on the basis of ANFIS(Adaptive Neuro Fuzzy Infernce System) which could learn using a series of input-output data pairs. Simulation results showed its superiority to the PID controller. We believe that its applicability can be extended to the other nonlinear systems.

  • PDF

상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계 (Design of Neuro-Fuzzy Controller using Relative Gain Matrix)

  • 서삼준;김동원;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 2005
  • 일반적으로 다변수 계통에 대한 퍼지 제어에서 퍼지 규칙을 얻기가 어려워 입출력 사이의 페어링을 이용한 독립적인 단일 입력 단일 출력의 병렬 구조를 이용한다. 그러나, 결합되지 않은 입출력 변수간의 상호작용으로 제어 성능에 나쁜 영향을 준다. 특히, 강한 결합 특성을 가진 계통의 경우 제어 성능을 아주 저하시킨다. 본 논문에서는 이러한 상호작용에 의한 영향을 보상해주기 위해 상대 이득 행렬을 이용한 신경 회로망을 도입하였다 제안한 뉴로 퍼지 제어기는 역전파 알고리즘으로 학습되며 강호작용에 대한 결합강도를 자동으로 조정하여준다. 제안한 뉴로 퍼지 제어기의 성능을 200MW급 보일러 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.

적응 퍼지-뉴로 제어기의 설계와 응용 (Design & application of adaptive fuzzy-neuro controllers)

  • 강경운;김용민;강훈;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.710-717
    • /
    • 1993
  • In this paper, we focus upon the design and applications of adaptive fuzzy-neuro controllers. An intelligent control system is proposed by exploiting the merits of two paradigms, a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to update the fuzzy control rules on-line with the output error. And, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계 (A design of neuro-fuzzy adaptive controller using a reference model following function)

  • 이영석;유동완;서보혁
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

뉴로-퍼지 기법에 의한 오존농도 예측모델 (Neuro-Fuzzy Approaches to Ozone Prediction System)

  • 김태헌;김성신;김인택;이종범;김신도;김용국
    • 한국지능시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.616-628
    • /
    • 2000
  • In this paper, we present the modeling of the ozone prediction system using Neuro-Fuzzy approaches. The mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, the modeling of ozone prediction system has many problems and the results of prediction is not a good performance so far. The Dynamic Polynomial Neural Network(DPNN) which employs a typical algorithm of GMDH(Group Method of Data Handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system. The structure of the final model is compact and the computation speed to produce an output is faster than other modeling methods. In addition to DPNN, this paper also includes a Fuzzy Logic Method for modeling of ozone prediction system. The results of each modeling method and the performance of ozone prediction are presented. The proposed method shows that the prediction to the ozone concentration based upon Neuro-Fuzzy approaches gives us a good performance for ozone prediction in high and low ozone concentration with the ability of superior data approximation and self organization.

  • PDF

뉴로-퍼지를 이용한 영상 필터 연구 (A Study on the Image Filter using Neuro-Fuzzy)

  • 변오성;이철희;문성룡;임기영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.83-86
    • /
    • 2001
  • In this paper, it study about the image filter applied the hybrid fuzzy membership function to the neuro-fuzzy system. Here, this system applys the genetic algorithm in order to obtain the optimal image as the iteration carry for making the data value in the error. It is removed the included noise in an image using the proposed image filter and compared the proposed image filter performance with the other filters using MATLAB. And it is found that the proposed filter performance is superior to the other filters which has the similar structure through the images. To show the superior ability, it is compared with MSE and SNR for images.

  • PDF