• 제목/요약/키워드: Neuro-Controller

검색결과 221건 처리시간 0.026초

이륜구동 이동로봇의 균형을 위한 뉴로 퍼지 제어 (Neuro-fuzzy Control for Balancing a Two-wheel Mobile Robot)

  • 박영준;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.40-45
    • /
    • 2016
  • This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.

신경회로망 기반 자동 동조 뉴로-퍼지 PID 제어기 설계 (The Design of Auto Tuning Neuro-Fuzzy PID Controller Based Neural Network)

  • 김영식;이창구
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.830-836
    • /
    • 2006
  • 본 논문에서는 기존의 PID 제어기와 퍼지 제어기의 특성을 공통으로 갖는 새로운 형태의 신경회로망 기반 자동 동조 뉴로-퍼지 PID제어기를 제안하였다. 제안된 제어기는 퍼지의 선형성을 이용하여 퍼지 PID 제어기의 퍼지 연산부를 간략화 시키고 일반 PID 제어기와 유사한 입출력 특성을 갖도록 하였으며 비선형 성분 보상을 위하여 제어기 출력에 가장 큰 영향을 미치는 출력측 스케일 계수를 단일 신경 회로망 구조로 변경하고 PID 제어기 구조를 유지하게 하였다. 또한 단일 신경 회로망 구조를 이용함으로써 신경회로망의 초기 연결강도와 계산량에 대한 문제점을 해결하고 오차의 부호 정보에 따라 학습계수를 변화시키는 가변 학습계수 역전파 알고리즘을 사용하여 오버 슈트가 작으면서도 빠른 수렴 속도를 갖도록 하였다. 제안된 제어기를 비선형성이 강한 시스템으로 알려진 자기 부양(magnetic levitation) 시스템에 실제 적용하여 본 논문에서 제안한 제어기의 우수한 성능을 확인하였다.

  • PDF

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

동적 환경에서 뉴로-퍼지를 이용한 웹 기반 자율 잠수 이동로봇 제어기 설계 (Design of a Web-based Autonomous Under-water Mobile Robot Controller Using Neuro-Fuzzy in the Dynamic Environment)

  • 최규종;신상운;안두성
    • 수산해양기술연구
    • /
    • 제39권1호
    • /
    • pp.77-83
    • /
    • 2003
  • Autonomous mobile robots based on the Web have been already used in public places such as museums. There are many kinds of problems to be solved because of the limitation of Web and the dynamically changing environment. We present a methodology for intelligent mobile robot that demonstrates a certain degree of autonomy in navigation applications. In this paper, we focus on a mobile robot navigator equipped with neuro-fuzzy controller which perceives the environment, make decisions, and take actions. The neuro-fuzzy controller equipped with collision avoidance behavior and target trace behavior enables the mobile robot to navigate in dynamic environment from the start location to goal location. Most telerobotics system workable on the Web have used standard Internet techniques such as HTTP, CGI and Scripting languages. However, for mobile robot navigations, these tools have significant limitations. In our study, C# and ASP.NET are used for both the client and the server side programs because of their interactivity and quick responsibility. Two kinds of simulations are performed to verify our proposed method. Our approach is verified through computer simulations of collision avoidance and target trace.

Nonlinear control of structure using neuro-predictive algorithm

  • Baghban, Amir;Karamodin, Abbas;Haji-Kazemi, Hasan
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1133-1145
    • /
    • 2015
  • A new neural network (NN) predictive controller (NNPC) algorithm has been developed and tested in the computer simulation of active control of a nonlinear structure. In the present method an NN is used as a predictor. This NN has been trained to predict the future response of the structure to determine the control forces. These control forces are calculated by minimizing the difference between the predicted and desired responses via a numerical minimization algorithm. Since the NNPC is very time consuming and not suitable for real-time control, it is then used to train an NN controller. To consider the effectiveness of the controller on probability of damage, fragility curves are generated. The approach is validated by using simulated response of a 3 story nonlinear benchmark building excited by several historical earthquake records. The simulation results are then compared with a linear quadratic Gaussian (LQG) active controller. The results indicate that the proposed algorithm is completely effective in relative displacement reduction.

뉴로-퍼지 제어기를 이용한 원형 역진자 시스템의 제어 (The Control of the Rotary Inverted Pendulum System using Neuro-Fuzzy Controller)

  • 이주원;채명기;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.45-49
    • /
    • 1997
  • In this paper, we controlled a Rotary Inverted Pendulum System using Neuro-Fuzzy Controller(NFC). The inverted pendulum system is widely used as a typical example of an unstable nonlinear control system which is difficult to control. Fuzzy theory have been because membership functions and rules of a fuzzy controller are often given by experts or a fuzzy logic control system. This controller is a feedforward multilayered network which integrates the basic elements and functions of a tradtional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such NFC can be constructed from training examples by learning rule, and the structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Using this controller, we presented the results that controlled a Rotary Inverted Pendulum System and the associated algorithms.

  • PDF

Adaptive Fuzzy Neuro Controller for Speed Control of Induction Motor

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.9-15
    • /
    • 2012
  • This paper is proposed the adaptive fuzzy neuro controller(AFNC) for high performance of induction motor drive. The design of this algorithm based on the AFNC that is implemented using fuzzy controller(FC) and neural network(NN). This controller uses fuzzy rule as training patterns of a NN. Also, this controller adjusts the weights between the neurons of NN to minimize the error between the command output and the actual output using the back-propagation method. The control performance of the AFNC is evaluated by analysis in various operating conditions. The results of analysis prove that the proposed control system has high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Control of Nonminimum Phase Systems with Neural Networks and Genetic Algorithm

  • Park, Lae-Jeong;Park, Sangbong;Bien, Zeugnam;Park, Cheol-Hoon
    • 한국지능시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.35-49
    • /
    • 1994
  • It is well known that, for nominimum phase systems, a conventional linear controller of PID type or an adaptive controller of this structure shows limitation in achieving a satisfactory performance under tight specifications. In this paper, we combine a neuro-controller with a PI-controller with off-line learning capability provided by the Genetic Algorithm to propose a novel neuro-controller to control nonminimum phase systems effectively. The simulation results show that our proposed model is more efficient with faster rising time and less undershoot effect when the performances of the proposed controller and a conventional form are compared.

  • PDF

A Fuzzy Model of Systems using a Neuro-fuzzy Network

  • 정광손;박종국
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.21-27
    • /
    • 1997
  • Neuro-fuzzy network that combined advantages of the neural network in learning and fuzzy system in inferencing can be used to establish a system model in the design of a controller. In this paper, we presented the neuro-fuzzy system that can be able to generated a linguistic fuzzy model which results in a similar input/output response to the original system. The network was used to model a system. We tested the performance ot the neuro-fuzzy network through computer simulations.

  • PDF

상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계 (Design of Neuro-Fuzzy Controller using Relative Gain Matrix)

  • 서삼준;김동원;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 2005
  • 일반적으로 다변수 계통에 대한 퍼지 제어에서 퍼지 규칙을 얻기가 어려워 입출력 사이의 페어링을 이용한 독립적인 단일 입력 단일 출력의 병렬 구조를 이용한다. 그러나, 결합되지 않은 입출력 변수간의 상호작용으로 제어 성능에 나쁜 영향을 준다. 특히, 강한 결합 특성을 가진 계통의 경우 제어 성능을 아주 저하시킨다. 본 논문에서는 이러한 상호작용에 의한 영향을 보상해주기 위해 상대 이득 행렬을 이용한 신경 회로망을 도입하였다 제안한 뉴로 퍼지 제어기는 역전파 알고리즘으로 학습되며 강호작용에 대한 결합강도를 자동으로 조정하여준다. 제안한 뉴로 퍼지 제어기의 성능을 200MW급 보일러 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.