• Title/Summary/Keyword: Neuro fuzzy network

Search Result 192, Processing Time 0.031 seconds

The Fuzzy Wavelet Neural Network System based on the improved ANFIS (개선된 ANFIS 기반 퍼지 웨이브렛 신경망 시스템)

  • 변오성;박인규;백덕수;문성룡
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.129-132
    • /
    • 2002
  • 본 논문은 웨이브렛 변환 다중해상도 분해(multi-resolution Analysis : MRA)와 적응성 뉴로-퍼지 인터페이스 시스템(Adaptive Neuro-Fuzzy Inference System : ANFIS)을 기반으로 한 웨이브렛 신경망을 가지고 임의의 비선형 함수 학습 근사화를 개선하는 것이다. ANFIS 구조는 벨형 퍼지 함수로 구성이 되었고, 웨이브렛 신경망은 전파 알고리즘과 역전파 신경망 알고리즘으로 구성되었다. 여기 웨이브렛 구성은 단일 크기이고, ANFIS 기반 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 1차원과 2차원 함수에서 웨이브렛 전달 파라미터 학습과 ANFIS의 벨형 소속 함수를 이용한 ANFIS 모델 기반 웨이브렛 신경망의 웨이브렛 기저 수 감소와 수렴 속도 성능이 기존의 알고리즘 보다 개선되었음을 확인하였다.

  • PDF

An Automatic Fuzzy Rule Extraction using an Advanced Quantum Clustering and It's Application to Nonlinear Regression (개선된 Quantum 클러스터링을 이용한 자동적인 퍼지규칙 생성 및 비선형 회귀로의 응용)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.182-183
    • /
    • 2007
  • 본 논문에서는 전형적인 비선형 회귀문제를 다루기 위해 슈뢰딩거 방정식에 의해 표현되는 Hilbert공간에서 수행되는 Quantum 클러스터링과 Mountain 함수를 이용하여, 수치적인 입출력데이터로부터 TSK 형태의 자동적인 퍼지 if-then 규칙의 생성방법을 제안한다. 여기서 슈뢰딩거 방정식은 분석적으로 확률함수로부터 유도되어질 수 있는 포텐셜 함수를 포함한다. 이 포텐셜의 최소점들은 데이터의 특성을 포함하는 클러스터 중심들과 관련되어진다. 그러나 이들 클러스터 중심들은 데이터의 수와 같으므로 퍼지 규칙을 생성하기 어려울 뿐만 아니라 수렴속도가 느린 문제점을 가지고 있다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 밀도 척도에 기초한 클러스터 중심의 근사적인 추정에 대해 간단하면서 효과적인 Mountain 함수를 이용하여 효과적인 클러스터 중심을 얻음과 동시에 적응 뉴로-퍼지 네트워크의 자동적인 퍼지 규칙을 생성하도록 한다. 자동차 MPG 예측문제에 대한 시뮬레이션 결과는 제안된 방법이 기존 문헌에서 제시한 예측성능보다 더 좋은 특성을 보임을 알 수 있었다.

  • PDF

Reliability analysis of an embedded system with multiple vacations and standby

  • Sharma, Richa;Kaushik, Manju;Kumar, Gireesh
    • International Journal of Reliability and Applications
    • /
    • v.16 no.1
    • /
    • pp.35-53
    • /
    • 2015
  • This investigation deals with reliability and sensitivity analysis of a repairable embedded system with standby wherein repairman takes multiple vacations. The hardware system consists of 'M' operating and 'S' standby components. The repairman can leave for multiple vacations of random length during its idle time. Whenever any operating unit fails, it is immediately replaced by a standby unit if available. Moreover, governing equations of an embedded system are constructed using appropriate birth-death rates. The vacation and repair time of repairman are exponentially distributed. The matrix method is used to find the steady-state probabilities of the number of failed components in the embedded system as well as other performance measures. Reliability indexes are presented. Further, numerical experiments are carried out for various system characteristics to examine the effects of different parameter. Using a special class of neuro-fuzzy systems i.e. Adaptive Network-based Fuzzy Interference Systems (ANFIS), we also approximate various performance measures. Finally, the conclusions and future research directions are provided.

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

RECOGNITION ALGORITHM OF DRIED OAK MUSHROOM GRADINGS USING GRAY LEVEL IMAGES

  • Lee, C.H.;Hwang, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.773-779
    • /
    • 1996
  • Dried oak mushroom have complex and various visual features. Grading and sorting of dried oak mushrooms has been done by the human expert. Though actions involved in human grading looked simple, a decision making underneath the simple action comes from the result of the complex neural processing of the visual image. Through processing details involved in human visual recognition has not been fully investigated yet, it might say human can recognize objects via one of three ways such as extracting specific features or just image itself without extracting those features or in a combined manner. In most cases, extracting some special quantitative features from the camera image requires complex algorithms and processing of the gray level image requires the heavy computing load. This fact can be worse especially in dealing with nonuniform, irregular and fuzzy shaped agricultural products, resulting in poor performance because of the sensitiveness to the crisp criteria or specific ules set up by algorithms. Also restriction of the real time processing often forces to use binary segmentation but in that case some important information of the object can be lost. In this paper, the neuro net based real time recognition algorithm was proposed without extracting any visual feature but using only the directly captured raw gray images. Specially formated adaptable size of grids was proposed for the network input. The compensation of illumination was also done to accomodate the variable lighting environment. The proposed grading scheme showed very successful results.

  • PDF

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Design of Adaptive Neuro-Fuzzy Inference System Based Automatic Control System for Integrated Environment Management of Ubiquitous Plant Factory (유비쿼터스 식물공장의 통합환경관리를 위한 적응형 뉴로-퍼지 추론시 스템 기반의 자동제어시스템 설계)

  • Seo, Kwang-Kyu;Kim, Young-Shik;Park, Jong-Sup
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.169-175
    • /
    • 2011
  • The adaptive neuro-fuzzy inference system (ANFIS) based automatic control system framework was proposed for integrated environment management of ubiquitous plant factory which can collect information of crop cultivation environment and monitor it in real-time by using various environment sensors. Installed wireless sensor nodes, based on the sensor network, collect the growing condition's information such as temperature, humidity, $CO_2$, and the control system is to monitor the control devices by using ANFIS. The proposed automatic control system provides that users can control all equipments installed on the plant factory directly or remotely and the equipments can be controlled automatically when the measured values such as temperature, humidity, $CO_2$, and illuminance deviated from the decent criteria. In addition, the better quality of the agricultural products can be gained through the proposed automatic control system for plant factory.

Study of On-line Performance Diagnostic Program of A Helicopter Turboshaft Engine (헬리콥터 터보축 엔진의 온라인 상태진단 프로그램 연구)

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ryu, Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1238-1244
    • /
    • 2009
  • This work proposes a GUI-type on-line diagnostic program using SIMULINK and Fuzzy-Neuro algorithms for a helicopter turboshaft engine. During development of the diagnostic program, a look-up table type base performance module for reducing computer calculating time and a signal generation module for simulating real time performance data are used. This program is composed of the on-line condition monitoring program to monitor on-line measuring performance condition, the fuzzy inference system to isolate the faults from measuring data and the neural network to quantify the isolated faults. The reliability and capability of the proposed on-line diagnostic program were confirmed through application to the helicopter engine health monitoring.

Design of Neuro-Fuzzy based Intelligent Inference Algorithm for Energy Management System with Legacy Device (비절전 가전기기를 위한 에너지 관리 시스템의 뉴로-퍼지 기반 지능형 추론 알고리즘 설계)

  • Choi, In-Hwan;Yoo, Sung-Hyun;Jung, Jun-Ho;Lim, Myo-Taeg;Oh, Jung-Jun;Song, Moon-Kyou;Ahn, Choon-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.779-785
    • /
    • 2015
  • Recently, home energy management system (HEMS) for power consumption reduction has been widely used and studied. The HEMS performs electric power consumption control for the indoor electric device connected to the HEMS. However, a traditional HEMS is used for passive control method using some particular power saving devices. Disadvantages with this traditional HEMS is that these power saving devices should be newly installed to build HEMS environment instead of existing home appliances. Therefore, an HEMS, which performs with existing home appliances, is needed to prevent additional expenses due to the purchase of state-of-the-art devices. In this paper, an intelligent inference algorithm for EMS at home for non-power saving electronic equipment, called legacy devices, is proposed. The algorithm is based on the adaptive network fuzzy inference system (ANFIS) and has a subsystem that notifies retraining schedule to the ANFIS to increase the inference performance. This paper discusses the overview and the architecture of the system, especially in terms of the retraining schedule. In addition, the comparison results show that the proposed algorithm is more accurate than the classic ANFIS-based EMS system.

A Study on the Prediction of the Nonlinear Chaotic Time Series Using Genetic Algorithm based Fuzzy Neural Network (유전 알고리즘을 이용한 퍼지신경망의 시계열 예측에 관한 연구)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.91-97
    • /
    • 2011
  • In this paper we present an approach to the structure identification based on genetic algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy-genetic hybrid system in order to predicate the Mackey-Glass Chaotic time series. In this scheme the basic idea consists of two steps. One is the construction of a fuzzy rule base for the partitioned input space via genetic algorithm, the other is the corresponding parameters of the fuzzy control rules adapted by the backpropagation algorithm. In an attempt to test the performance the proposed system, three patterns, x(t-3), x(t-6) and x(t-9), was prepared according to time interval. It was through lots of simulation proved that the initial small error of learning owed to the good structural identification via genetic algorithm. The performance was showed in Table 2.