• Title/Summary/Keyword: Neuro Systems

Search Result 317, Processing Time 0.025 seconds

Design of IMC Controller for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • 강정규;김정수;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.236-236
    • /
    • 2000
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC systems is their robustness with respect to a model mismatch and disturbances. But it was difficult to apply for nonlinear systems. Adaptive Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to identify a nonlinear dynamical systems. In this paper, we propose new IMC design method using adaptive neuro-fuzzy inference system for nonlinear plant. Numerical simulation results show that proposed IMC design method has good performance than classical PID controller.

  • PDF

Fault Types-Classification, Section Discrimination and location Algorithm using Neuro-Fuzzy in Combined Transmission Lines (뉴로-퍼지를 이용한 혼합송전선로에서의 고장종류, 고장구간 및 고장점 추정 알고리즘)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.412-415
    • /
    • 2003
  • It is important to classily fault types, discriminate fault section and calculate the fault location by any detecting technique for combined transmission lines. This paper proposes the technique to classily the fault types and fault section using neuro-fuzzy systems. Neuro-fuzzy systems are composed of three parts to perform different works. First, neuro-fuzzy system for fault type classification is performed with approximation coefficient of currents obtained by wavelet transform. The second neuro-fuzzy system discriminates the fault section between overhead and underground with detail coefficients of voltage and current. The last neuro-fuzzy system calculates the fault location with impedance in this paper, neuro-furry system shows the excellent results for classification of fault types and discrimination of fault section.

  • PDF

Notes on Conventional Neuro-Fuzzy Learning Algorithms

  • Shi, Yan;Mizumoto, Masaharu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.391-394
    • /
    • 1998
  • In this paper, we try to analyze two kinds of conventional neuro-fuzzy learning algorithms, which are widely used in recent fuzzy applications for tuning fuzzy rules, and give a summarization of their properties. Some of these properties show that uses of the conventional neuro-fuzzy learning algorithms are sometimes difficult or inconvenient for constructing an optimal fuzzy system model in practical fuzzy applications.

  • PDF

Design of the Learning Organization through the Neuro-cybernetics: A Theoretical Suggestion (신경사이버네틱스를 통한 학습조직의 설계: 이론적 제시)

  • Lee, Hong
    • Knowledge Management Research
    • /
    • v.1 no.1
    • /
    • pp.65-80
    • /
    • 2000
  • The main purpose of this study is to answer a question that how a company can be a learning organization producing useful knowledge by applying neuro-cybernetics approach. This approach borrows its working principles from the human body systems. The current study urges that the principles can be applied to build a learning organization. System 1 to 5, the core parts of neuro-cybernetics, are explained. And it is explored that how these systems can be designed for a company to be a learning organization. Limitations of the current study are discussed at the end of the paper.

  • PDF

Structure Identification of a Neuro-Fuzzy Model Can Reduce Inconsistency of Its Rulebase

  • Wang, Bo-Hyeun;Cho, Hyun-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.276-283
    • /
    • 2007
  • It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.

Design of Self Recurrent Neuro-Fuzzy Controller for Stabilization of Nonlinear System (비선형 시스템의 안정화를 위한 자기순환 뉴로-퍼지 제어기의 설계)

  • Tak, Han-Ho;Lee, In-Yong;Lee, Seong-Hyeon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.390-393
    • /
    • 2007
  • In this paper, applications of self recurrent neuro-fuzzy controller to stabilization of nonlinear system are considered. The architecture of self recurrent neuro-fuzzy controller is fix layer, and the hidden layer is comprised of self recurrent architecture. Also, generalized dynamic error-backpropagation algorithm is used for the learning of the self recurrent neuro-fuzzy controller. To demonstrate the efficiency of the self recurrent neuro-fuzzy control algorithm presented in this study, a self recurrent neuro-fuzzy controller was designed and then a comparative analysis was made with LQR controller through an simulation.

  • PDF

Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System (학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링)

  • Park, Gwi-Tae;Kim, Dong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

Design of Neuro-Fuzzy Controllers for DC Motor Systems with Friction

  • Kim, Min-Jae;Jun oh Jang;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.70-70
    • /
    • 2000
  • Recently, a neuro-fuzzy approach, a combination of neural networks and fuzzy reasoning, has been playing an important role in the motor control. In this paper, a novel method of fiction compensation using neuro-fuzzy architecture has been shown to significantly improve the performance of a DC motor system with nonlinear friction characteristics. The structure of the controller is the neuro-fuzzy network with the TS(Takagi-Sugeno) model. A back-propagation neural network based on a gradient descent algorithm is employed, and all of its parameters can be on-line trained. The performance of the proposed controller is compared with both a conventional neuro-controller and a PI controller.

  • PDF

Fault Types-Classification and Section Discrimination Algorithm using Neuro-Fuzzy in Combined Transmission Lines (뉴로-퍼지를 이용한 혼합송전선로에서의 고장종류 및 고장구간 판별 알고리즘)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.534-536
    • /
    • 2003
  • It is important to classily fault types and discriminate fault section by any detecting technique for combined transmission lines. This paper proposes the technique to classify the fault types and fault section using neuro-fuzzy systems. Neuro-fuzzy systems are composed of two parts to perform different works. First, neuro-fuzzy system for fault type classification is performed with approximation coefficient of currents obtained by wavelet transform. Another neuro-fuzzy system discriminates the fault section between overhead and underground with detail coefficients of voltage and current. In this paper, neuro-fuzzy system shows the excellent results for classification of fault types and discrimination of fault section.

  • PDF

A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter (헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구)

  • Choi, Yong-Sun;Lim, Tae-Woo;Jang, Gung-Won;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF