• Title/Summary/Keyword: Neuro Design

Search Result 226, Processing Time 0.03 seconds

Neuro-genetic controller design of the line of sight system (유전알고리듬에 의한 조준경 시스템의 신경망제어기 설계)

  • 이승수;장준오;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.956-959
    • /
    • 1996
  • In this study, we propose a neuro-genetic controller combined with a linear controller in parallel to improve the tracking performance of the Line of Sight(LOS) stabilization system and reject the effect of disturbances. A Genetic Algorithm(GA) is used to optimize weights of the neuro-genetic controller since this algorithm can search a global minimum without derivatives or other auxiliary knowledge. The LOS system is very complex and has limited measurable output data. Under these specific circumstances GA solves many problems that other training methods have. Computer simulation results show that the, proposed controller makes better tracking response and rejection of disturbance than a linear controller.

  • PDF

Neuro-Fuzzy Observer Design for Speed control of AC Servo Motor (교류 서보 전동기의 속도제어를 위한 뉴로-퍼지 관측기설계)

  • Ban, Gi-Jong;Choi, Sung-Dai;Yoon, Kwang-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.170-173
    • /
    • 2005
  • This paper presents an Fuzzy-Neuro Observer system for an ac servo motor dirve to track periodic commands using a neuro-fuzzy observer. AC servo motor drive system is rather similar to a linear system. However, the uncertainties, such as machanical parametric variation, external disturbance, uncertainty due to nonideal in transient state. therefore an intelligent control system that isan on-line trained neural network controller with adaptive learning rates.

  • PDF

Design of Neuro-Fuzzy Controller for Speed Control Applied to DC Servo Motor (직류시보전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계)

  • Kim, Sang-Hoon;Kang, Young-Ho;Ko, Bong-Woon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.48-54
    • /
    • 2002
  • In this study, a neuro-fuzzy controller which has the characteristic of fuzzy control and artificial neural network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to fuzzy rules are created by an expert. To adapt the more precise model is implemented by error back-propagation learning algorithm to adjust the link-weight of fuzzy membership function in the neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of the proposed algorithm designed above, an operating characteristic of a DC servo motor with variable load is investigated.

Design of Improved Neuro-Fuzzy Controller for the Development of Fast Response and Stability of DC Servo Motor (직류 서보 전동기의 속응성 및 안정성 향상을 위한 개선된 뉴로-퍼지 제어기의 설계)

  • Kang, Young-Ho;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.252-257
    • /
    • 2002
  • We designed a neuro-fuzzy controller to improve some problems that are happened when the DC servo motor is controlled by a PID controller or a fuzzy logic controller. Our model proposed in this paper has the stable and accurate responses, and shortened settling time. To prove the capability of the neuro-fuzzy controller designed in this paper, the proposed controller is applied to the speed control of DC servo motor. The results showed that the proposed controller did not produce the overshoot, which happens when PID controller is used, and also it did not produce the steady state error when FLC is used. And also, it reduced the settling time about 10%. In addition, we could by aware that our model was only about 60% of the value of current peak of PID controller.

Conceptual Study of Brain Dedicated PET Improving Sensitivity

  • Shin, Han-Back;Choi, Yong;Huh, Yoonsuk;Jung, Jin Ho;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.236-240
    • /
    • 2016
  • The purpose of this study is to propose a novel high sensitivity neuro-PET design. The improvement of sensitivity in neuro-PET is important because it can reduce scan time and/or radiation dose. In this study, we proposed a novel PET detector design that combined conical shape detector with cylindrical one to obtain high sensitivity. The sensitivity as a function of the oblique angle and the ratio of the conical to cylindrical portion was estimated to optimize the design of brain PET using Monte Carlo simulation tool, GATE. An axial sensitivity and misplacement rate by penetration of ${\gamma}$ rays were also estimated to evaluate the performance of the proposed PET. The sensitivity was improved by 36% at the center of axial FOV. This value was similar to the calculated value. The misplacement rate of conical shaped PET was about 5% higher than the conventional PET. The results of this study demonstrated the conical detector proposed in this study could provide subsequent improvement in sensitivity which could allow to design high sensitivity PET for brain imaging.

Design of Adaptive-Neuro Controller of SCARA Robot Using Digital Signal Processor (디지털 시그널 프로세서를 이용한 스카라 로봇의 적응-신경제어기 설계)

  • 한성현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.7-17
    • /
    • 1997
  • During the past decade, there were many well-established theories for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of industrial robot control. Neural network computing methods provide one approach to the development of adaptive and learning behavior in robotic system for manufacturing. Computational neural networks have been demonstrated which exhibit capabilities for supervised learning, matching, and generalization for problems on an experimental scale. Supervised learning could improve the efficiency of training and development of robotic systems. In this paper, a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital signal processors is proposed. Digital signal processors, DSPs, are micro-processors that are developed particularly for fast numerical computations involving sums and products of variables. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be an efficient control scheme for implementation of real-time control for SCARA robot with four-axes by experiment.

  • PDF

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Design of a Neuro-Fuzzy Observer for Speed-Sensorless Control of DC Servo Motor (직류 서보 전동기 센서리스 속도제어를 위한 뉴로-퍼지 관측기 설계)

  • Ahn, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.129-135
    • /
    • 2007
  • This paper deals with speed-sensorless control of DC servo motor using Neuro-Fuzzy Observer. DC servo motor has very low rotor inertia and excellent response characteristic and it is very useful to control torque and speed. It is easy to detect the voltage and current and resolver or encoder is used to measure a rotor speed. But it has a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve this problem, it is studied to detect a speed of DC servo motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this paper, the gain of the observer is properly set up using the Neuro-Fuzzy control and Neuro-Fuzzy Observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. It calculates the differentiation of the rotor current directly using the rotor current measured in the DC servo motor and estimates the speed of the rotor using the differentiation. Proposed speed sensorless control method is performed using the estimated speed. Also, it is proved feasibility of the proposed observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200[w] DC servo motor starting system.

Reliability Computation of Neuro-Fuzzy Model Based Short Term Electrical Load Forecasting (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템의 신뢰도 계산)

  • Shim, Hyun-Jeong;Wang, Bo-Hyeun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.10
    • /
    • pp.467-474
    • /
    • 2005
  • This paper presents a systematic method to compute a reliability measure for a short term electrical load forecasting system using neuro-fuzzy models. It has been realized that the reliability computation is essential for a load forecasting system to be applied practically. The proposed method employs a local reliability measure in order to exploit the local representation characteristic of the neuro-fuzzy models. It, hence, estimates the reliability of each fuzzy rule learned. The design procedure of the proposed short term load forecasting system is as follows: (1) construct initial structures of neuro-fuzzy models, (2) store them in the initial structure bank, (3) train the neuro-fuzzy model using an appropriate initial structure, and (4) compute load prediction and its reliability. In order to demonstrate the viability of the proposed method, we develop an one hour ahead load forecasting system by using the real load data collected during 1996 and 1997 at KEPCO. Simulation results suggest that the proposed scheme extends the applicability of the load forecasting system with the reliably computed reliability measure.

Design of a Neuro Observer for Reduction of Estimate Error (추정오차 저감을 위한 뉴로 관측기 설계)

  • Nam Moon-Hyon;Yoon Kwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.285-290
    • /
    • 2005
  • The state observer is being used widely because it has the advantage of the guarantee of reliability on financial problem, over heating, and physical shock. However, an Luenberger observer and a Sliding observer have such problems that an experimenter needs to know dynamics and parameters of the system. And also, the high gain observer has such a problem that it has transient state at the beginning of the observation. In this paper, the Neuro observer is proposed to improve these problems. The proposed Neuro observer complement a problem that occur from increase of gain of High-gain observer in proportion to the square number of observable state variables. And also, the proposed Neuro observer can tune the gain obtained by differentiating observational error at transient state automatically by using the backpropagation training method to stabilize the observational speed. To prove a performance of the proposed observer, it is simulated that the comparison between the state estimate performance of the proposed observer and that of Sliding, High gain observer is made by using a sinusoidal input to the observer which consists of four layers in stable 2nd order system.