• 제목/요약/키워드: Neural-Network Controller

검색결과 1,126건 처리시간 0.036초

신경 회로망의 RLED 로봇 머너퓰레이터 추적 제어 (Neural Network Tracking Control of Rigid-tink Electrically-Driven Robot Manipulators)

  • 정재욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.74-74
    • /
    • 2000
  • This paper presents a neural network controller for a rigid-link electrically-driven robot. The proposed controller is designed in conjunction with three neural networks approximating for complicated nonlinear functions. Particularly, the fact, different from conventional schemes, is that the neural network based current observer is used. Therefore, no accurate measurement of the actuator driving current is required. In the proposed controller-observer scheme, the derived weight update rule guarantees the stability of closed-loop system in the sense of Lyapunov. The effectiveness and performance of the proposed method are demonstrated through computer simulation.

  • PDF

다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어 (Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation)

  • 오세영;류연식
    • 대한전기학회논문지
    • /
    • 제39권12호
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

신경회로망을 이용한 퍼지 제어규칙의 추정 및 퍼지 제어기의 구현 (Identification of fuzzy rule and implementation of fuzzy controller using neural network)

  • 전용성;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.856-860
    • /
    • 1991
  • This paper proposes a modified fuzzy controller using a neural network. This controller can automatically identify expert's control rules and tune membership functions utilizing expert's control data. Identificaton capability of the fuzzy controller is examined using simple numerical data. The results show that the network in this paper can identify nonlinear systems more precisely than conventional fuzzy controller using neural network.

  • PDF

무인 전기자동차의 신경회로망 조향 제어기 개발 (Development of the Neural Network Steering Controller for Unmanned electric Vehicle)

  • 손석준;김태곤;김정희;류영재;김의선;임영철;이주상
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.281-286
    • /
    • 2000
  • This paper describes a lateral guidance system of an unmanned vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in the unmanned vehicle simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the learning pattern, learning itself, and the adequacy of the design controller. A computer simulation of the vehicle (including vehicle dynamics and steering) was used to verify the steering performance of the vehicle controller using the neural network. Good results were obtained. Also, the real unmanned electrical vehicle using neural network controller verified good results.

  • PDF

인공신경망 Feedforward제어기를 이용한 좌심실보조장치의 제어실험 (Control of Left Ventricular Assist Device using Neural Network Feedback Feedforward Controller)

  • 정성택;류정우;김상현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.150-155
    • /
    • 1997
  • In this paper,we present neural network for control of Left Ventricular Assist Device(LVAD)system with a pneumatically driven mock cirulation system. It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately, the neural network can be applied to control of a nonliner dynamic system by learning capability. In this study,we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by computer simulation and experiment.

  • PDF

신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기 (STPI Controller of IPMSM Drive using Neural Network)

  • 고재섭;최정식;정동화
    • 전자공학회논문지SC
    • /
    • 제44권2호
    • /
    • pp.24-31
    • /
    • 2007
  • 본 논문은 신경회로망을 이용한 IPMSM 드라이브의 자기동조 PI 제어기를 제시한다. 일반적으로 수치제어장치 처리는 고정된 이득값을 가진 PI 제어기를 이용한다. 고정된 이득값을 가진 PI 제어기는 어떠한 환경에서는 양호하게 동작할 수 도 있다. 고정된 이득값을 가진 PI 제어기의 강인성을 증가시키기 위하여 신경회로망을 기반으로한 새로운 방법인 STPI 제어기를 제시하였다. STPI 제어기는 속도, 부하토크, 관성과 같은 파라비터가 갑자기 변화하였을 때 오버슈트, 상승시간, 안정화시간을 최소화한다. 또한 본 논문에서는 신경회로망을 이용하여 속도를 제어하고 ANN 제어기를 이용하여 속도를 추정한다. 신경회로망의 역전파 알고리즘 기법은 전동기 속도의 실시간 추정을 제시한다. IPMSM의 속도제어의 결과는 이득값 동조의 효용성을 보여준다. 그리고 STPI 제어기는 고정된 이득값을 가진 PI 제어기에 비하여 강인성 광범위한 운전영역 부하 왜란등에 대하여 우수한 성능을 나타낸다.

직류전동기의 속도제어를 위한 신경회로망의 새로운 적용 (New application of Neural Network for DC motor speed control)

  • 박왈서
    • 조명전기설비학회논문지
    • /
    • 제18권2호
    • /
    • pp.63-67
    • /
    • 2004
  • 신경회로망은 많은 제어분야에서 이용되고 있다. 제어기로 사용될 경우에, 신경망 제어기는 입출력 패턴에 의하여 학습을 하게 된다. 그러나 제어분야의 대부분의 경우에 있어서 신경망 제어기의 입출력 패턴을 구할 수 없다. 이러한 문제를 해결하기 위한 한 방법으로, 본 논문에서는 신경망 출력노드에 제어 대상체를 가져오는 새로운 제어 방법을 시도하였다. 이와 같은 새로운 제어 방법의 적용으로 신경회로망제어기의 입출력 데이터를 얻는 문제를 해결할 수 있었다. 제의된 제어 알고리즘의 효과는 직류 서보 전동기의 모의실험에 의하여 확인하였다.

인공신경망을 이용한 병렬로봇의 정밀한 추적제어 (Precise Tracking Control of Parallel Robot using Artificial Neural Network)

  • 송낙윤;조황
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

퍼지신경망을 이용한 직류서보 모터의 위치 제어에 관한 연구 (A Study on the Position Control of DC servo Motor Usign a Fuzzy Neural Network)

  • 설재훈;임영도
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.51-59
    • /
    • 1997
  • 본 논문에서는 퍼지신경망 제어기를 이용하여 직류서보 모터의 위치제어를 실행한다. 위치 제어를 위하여 인공지능 제어기중 설계가 간단한 퍼지제어기를 사용한다.그러나 퍼지 제어기 설계시 문제가 되는 삼각 소속함수의 형태를 신경망의 BP학습법을 이용하여 설정한다. 퍼지신경망 제어기의 위치제어 성능을 펑가하기 위하여 특성이 다른 가상 플랜트를 제어시켜 보았다.그리고 실시간 실험으로 퍼지신경망 제어기에 의한 직류서보 모터 위치제어를 실시하였다.

  • PDF

진화 신경회로망 제어기를 이용한 도립진자 시스템의 안정화 제어에 관한 연구 (A Study on Stabilization Control of Inverted Pendulum System using Evolving Neural Network Controller)

  • 김민성;정종원;성상규;박현철;심영진;이준탁
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.243-248
    • /
    • 2001
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Thus, in this paper, an Evolving Neural Network Controller(ENNC) without Error Back Propagation(EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC) are compared with the ones of conventional optimal controller and the conventional evolving neural network controller(CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF