• 제목/요약/키워드: Neural-Network

검색결과 11,709건 처리시간 0.037초

QRS 패턴에 의한 QS 간격과 R파의 진폭을 이용한 조기심실수축 분류 (PVC Classification based on QRS Pattern using QS Interval and R Wave Amplitude)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.825-832
    • /
    • 2014
  • 조기심실수축 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지 이론, SVM 등과 같은 비선형 방법이 주로 사용되어 왔다. 이러한 대부분의 방법들은 P-QRS-T 지점의 정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하다. 연산의 복잡도를 줄이기 위한 여러 가지 방법들이 제안되어 왔지만, 분류의 정확도가 떨어지는 문제점이 있었다. 또한 PVC는 개인의 특징에 따라 다양한 QRS 패턴이 존재하기 때문에 정확도에 한계가 있다. 따라서 이러한 문제점을 극복하기 위해서는 최소한의 특징점을 추출함으로써 연산의 복잡도를 줄이고, 개인마다 다른 QRS 패턴에 따라 PVC를 정확하게 분류할 수 있는 알고리즘이 필요하다. 따라서 본 연구에서는 QRS 패턴에 따른 QS 간격과 R파 진폭 변화율을 이용한 PVC 분류 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파, RR 간격, QRS 패턴을 추출한다. 이후 그 패턴에 따른 QS 간격과 R파의 진폭 변화율에 따라 PVC를 분류하였다. 제안한 방법의 우수성을 입증하기 위해 PVC가 30개 이상 포함된 MIT-BIH 9개의 레코드를 대상으로 한 R파의 평균 검출율은 99.02%의 성능을 나타내었으며, PVC 부정맥은 각각 93.72%의 평균 분류율을 나타내었다.

다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템 (A Korean Community-based Question Answering System Using Multiple Machine Learning Methods)

  • 권순재;김주애;강상우;서정연
    • 정보과학회 논문지
    • /
    • 제43권10호
    • /
    • pp.1085-1093
    • /
    • 2016
  • 커뮤니티 기반 질의 응답 시스템은 사용자 질의에 대한 정답을 인터넷 커뮤니티에 사용자들이 게시했던 문서 중에서 선택하여 제공하는 시스템이다. 기존 방법들은 질의 분석의 성능 향상을 위하여 목적 영역에 적합한 규칙을 구축하거나 일부 처리 과정에 기계 학습을 적용하였다. 하지만 기존 방법들은 적용 영역을 확장하거나 수정하는 경우 많은 비용이 소요되며 경우에 따라서는 시스템이 특정 영역에 과적합되는 경우가 발생한다. 본 논문에서는 커뮤니티 기반 질의-응답 시스템의 효과적인 처리를 위해서 시스템의 각 과정에 적합한 기계 학습 방법을 적용하여 전체 과정을 자동화하는 다중 기계학습 방법을 제안한다. 제안 시스템은 사용자 질의를 분석하는 부분과 정답 문서를 선택하는 부분으로 나눌 수 있다. 질의 분석 과정은 질의의 초점 구문을 분석하는 질의 핵심부 추출기와 질의의 주제를 분류하는 질의 유형 분류기로 구성하였으며, 전자는 조건부 무작위장을 사용하고 후자는 지지 벡터 기계를 사용한다. 정답 문서 선택에서는 유사도 측정에서 사용하는 가중치를 인공 신경망으로 학습한다. 또한 인터넷에 커뮤니티에 게시된 데이터는 형태소 분석 결과를 신뢰할 수 없는 경우가 많이 발생한다. 따라서 음절 자질을 사용하여 질의를 분석 단계에서 형태소 분석의 영향을 최소화하는 방법을 제안한다. 제안하는 시스템은 Mean Average Precision 기준으로 0.765, R-Precision 기준으로 0.872의 성능을 보여 기존 시스템보다 성능이 우수하다.

Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법 (A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms)

  • Daewon Kim
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.15-26
    • /
    • 2003
  • 초음파 검사 방법은 여러 가지 물질들의 흠집이나 틈새, 그리고 티끌 등을 감지해내는데 널리 쓰이고 있다. 그 중 초음파 신호를 분석하는 절차는 전체의 신호처리 과정에서 아주 중요한 역할을 담당하고 있다. 많은 초음파 신호처리와 신호분류의 방법들이 제기 되었는데 그 중 가장 널리 쓰이는 방법은 신호들의 특징 공간상에서 그 특정의 성분들을 추출해내고 그 후 신경망 네트웍을 통한 분류 방법을 이용하여 초음파 신호들을 구별해 내는 방법이다. 이 논문은 기존의 신호 분류 체계와는 다른 대체 신호 분류법을 제시하고 있는데 이것은 최소 평균 제곱 (LMS) 알고리즘을 이용하여 핵 전력 발전소에서 쓰이는 증기 발생기 튜브로부터 감지되어진 초음파 비파괴 검사 신호 (ultrasonic nondestructive evaluation signal) 을 분류해내는데 쓰일 수가 있다 이 초음파 비파괴 검사 신호는 튜브내의 흠집이나 틈새로부터 감지되어진 신호일수도 있고 또는 튜브내의 침전물에 의해서 발생된 신호일 수도 있는데 이 두가지 신호는 매우 유사하기 때문에 반드시 분류를 해내어 침전물에 의한 신호일 경우는 무방하지만 흠집이나 갈라진 틈새에서 나오는 신호일 경우는 더 이상의 오염이나 사고 등을 방지하기 위해 수리 또는 교체 등의 후속 조치로 이어져야 한다. 이러한 절차를 밟기 위하여 증기 발생기 튜브의 내부에서의 초음파 센서로부터 증기 발생기 튜브 사이의 거리를 측정하는데 모델링 기법에 기반한 deconvolution 방법이 제시되었고 여기서 나온 결과가 정리, 분석되었다 이 방법은 space alternating generalized expectation maximization (SAGE) 알고리즘을 이차원 미분 파라미터인 Hessian의 사용으로 인하여 수렴 속도가 빠른 Newton-Raphson 알고리즘과 함께 병행 사용하여 초음파 신호의 초점 도달 시간과 그 크기를 측정하여 초점 도달 거리에 따라 두 종류의 신호를 분류, 차별화 하는 기법이다. 이 알고리즘을 이용한 접근법으로 얻어진 결과가 흠집이나 틈새로부터 나온 신호일 경우와 퇴적물에 의해 나온 신호일 경우로 정리, 분류되었고 적절한 분류 효과를 보인 결과가 이 논문에 제시되었다.

  • PDF

피부 영역 분할과 신경 회로망에 기반한 칼라 영상에서 얼굴 검출 (Face Detection in Color Images Based on Skin Region Segmentation and Neural Network)

  • 이영숙;김영봉
    • 한국콘텐츠학회논문지
    • /
    • 제6권12호
    • /
    • pp.1-11
    • /
    • 2006
  • 많은 연구 데모용 프로그램들과 상업적 응용물들이 얼굴 검출과 얼굴 인식 시스템들을 개발하기 위해 시도되고 있다. 인간의 얼굴 검출은 접근 제어 및 비디오 감시 시스템, 휴먼 컴퓨터 인터페이스, 신원 인증 등과 같은 많은 응용 프로그램들에 중요한 역할을 한다. 일반적으로 스킨 영역 분할 후 배경과 연결된 얼굴, 스킨 칼라로 인한 연결된 얼굴들, 여러 개의 작은 부분들로 분할된 하나의 얼굴과 같은 몇 가지 특별한 문제점들이 있다. 많은 얼굴 검출 기법들이 첫 번째 와 두 번째 문제를 해결하도록 허락되어진다. 그러나 세 번째 문제에서 다른 조명 효과들로 인해서 여러 영역들로 분할된 하나의 얼굴이 검출되어지는 것은 쉽지가 않다. 그러므로 우리는 기존 영역 분할 알고리즘은 이용될 수 없기 때문에 이 문제를 해결하기 위해 효율적인 수정된 스킨 분할 알고리즘을 제안한다. 본 알고리즘은 전체 영상에 대해 피부 영역을 검출한 후 피부 분할 알고리즘을 사용하여 얼굴 후보 영역들을 생성한다. 각 얼굴 피부 후보 영역에 대해 그림자 등의 조명 효과로 인해 한 명의 얼굴이 여러 영역으로 분할되는 경우를 처리하기 위해 동차적 영역간의 인접성을 활용하여 하나의 큰 영역으로 만드는 병합 작업을 시도하였다. 다른 크기의 얼굴 검출을 위해 다양한 가변 크기의 탐색 윈도우와 선택된 각 얼굴 후보 영역에 얼굴이 존재하는지를 판단하기 위해 역전파 알고리즘에 기반한 얼굴 검출 분류기를 사용하였다.

  • PDF

심부 석탄광산의 환기시스템 최적화 연구 (A Study on Optimum Ventilation System in the Deep Coal Mine)

  • 권준욱;김선명;김윤광;장윤호
    • 터널과지하공간
    • /
    • 제25권2호
    • /
    • pp.186-198
    • /
    • 2015
  • 본 연구에서는 적정 소요환기량의 확보를 통한 갱내 환경의 최적화를 위한 기초연구로 갱내 소요환기량을 추정하였다. 채굴의 심부화 및 운행갱도의 증가로 인한 온도상승으로 작업환경이 점차 악화되는 광산에서 작업환경의 개선을 위하여 J광업소를 대상으로 환기평가를 하였으며 갱내의 환기효율을 증가시키기 위하여 갱도의 길이에 따른 온도에 대한 효과를 수치 해석하였다. 연구결과 J광업소의 소요환기량은 $17,831m^3/min$으로 산출되었으며, 실제 총 입기량은 $16,474m^3/min$로 환기량이 $1,357m^3/min$ 부족한 것으로 나타났다. 개발된 프로그램을 이용하여 J 광업소의 두 가지 개발모델에 관하여 온도 예측을 하였으며 온도계산의 기본 인자인 환기량 예측을 위해서 수치해석 프로그램인 VnetPC를 사용하였다. 실험 결과 첫 번째 개발모델인 -425ML을 전체 개발할 경우의 C 생산부 주운반갱도 9X의 온도는 $29.30^{\circ}C$로 예측되었으며 두 번째 모델인, A 생산부를 제외한 일부 지역만 개발할 경우의 온도는 $27.45^{\circ}C$로 예측되었다.

단기조사 교통량을 이용한 AADT 추정연구 (A study on the estimation of AADT by short-term traffic volume survey)

  • 이승재;백남철;권희정
    • 대한교통학회지
    • /
    • 제20권6호
    • /
    • pp.59-68
    • /
    • 2002
  • 도로의 설계 및 운영 등에 필요한 연평균 일 교통량은 365일 조사에 의한 것이 아닌 단기간 조사된 교통량을 사용하는 것으로써 이를 추정하려는 연구는 이전부터 있어왔다. 본 연구에서는 기존 연구를 바탕으로 이 AADT 추정의 방법을 개선시키고자 하였다. 먼저 그룹간의 차이를 뚜렷이 보여줄 수 있는 변수를 찾기 위해 그룹의 수를 변화시켜가며 각 그룹의 시간변 동요인들(전체, 주중, 토요일, 일요일, 주중-토요일, 주중-일요일)의 값을 살펴보아 그 차이가 가장 뚜렷한 변동 요인을 주중-일요일의 시간변동 요인으로 선정하였다. 그 다음 월 변동요인만을 사용하여 상시조사지점을 clustering하였다. 그룹간의 시간변동요인의 차이를 가장 크게 하는 것을 원칙으로 군집분석을 한 결과 10개의 그룹으로 묶을 수 있었다. 선정된 주중-일요일의 시간변동 요인을 사용하여 판별분석과 신경망을 통한 그룹할당을 했다. 신경망의 적중률이 판별분석의 경우보다 훨씬 좋았고, RMSE. U-test 결과도 더 좋았다. 결과를 전체적으로 살펴보면, 본 연구에서 사용한 방법(월 변동요인만을 사용하여 군집분석 한 후, 각 그룹에서 월별로 요일변동요인을 구해 적용한 AADT 추정)의 결과가 이전 연구인 월변동과 요일변동을 이용한 AADT 추정의 결과보다 훨씬 좋았다. 그리고 그룹할당의 변수를 주중-일요일의 시간변동요인으로 달리하였을 때, 신경망의 경우 그룹할당의 적중률이 더 높아지는 것을 볼 수 있었다.

최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법 (Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms)

  • 김대원
    • 비파괴검사학회지
    • /
    • 제25권1호
    • /
    • pp.27-35
    • /
    • 2005
  • 초음파 검사 방법은 여러 가지 물질들의 흠집이나 틈새, 티끌 등을 감지해내는데 널리 쓰이고 있다. 그 중 초음파 신호를 분석하는 절차는 전체의 신호처리 과정에서 아주 중요한 역할을 담당하고 있다. 이 논문은 최소평균 제곱 (LMS) 알고리즘을 이용하여 핵 전력 발전소에서 쓰이는 증기 발생기 튜브로부터 감지된 초음파 비파괴검사 신호를 분류 해내는 것에 관한 것이다. 이 초음파 신호는 튜브내의 흠집이나 틈새로부터 감지된 신호일수도 있고 또는 튜브 내의 침전물에 의해서 발생된 신호일 수도 있는데 이 두 가지 신호는 매우 유사하기 때문에 반드시 분류를 해내어 침전물에 의한 신호일 경우는 무방하지만 흠집이나 갈라진 틈새에서 나오는 신호일 경우는 더 이상의 오염이나 사고 등을 방지하기 위해 수리 또는 교체 등의 후속 조치로 이어져야 한다. 이러한 절차를 밟기 위하여 증기 발생기 튜브의 내부에서의 초음파 센서로부터 증기 발생기 튜브 사이의 거리를 측정하는데 모델링 기법에 기반한 deconvolution 방법이 제시되었으며 이 방법은 space alternating generalized expectation maximization (SAGE) 알고리즘을 이차원 미분 파라미터인 Hessian의 사용으로 인하여 수렴 속도가 빠른 Newton-Raphson 알고리즘과 함께 병행 사용하여 초음파 신호의 초점 도달 시간과 그 크기를 측정하여 초점 도달 거리에 따라 두 종류의 신호를 분류, 차별화 하는 기법이다. 이 알고리즘을 이용하여 흠집이나 틈새로부터 나온 신호일 경우와 퇴적물에 의해 나온 신호일 경우로 분류되었고 그 결과가 이 논문에 제시되었다.

퇴원손상심층조사 자료를 기반으로 한 급성심근경색환자 재원일수의 중증도 보정 모형 개발 (Severity-Adjusted LOS Model of AMI patients based on the Korean National Hospital Discharge in-depth Injury Survey Data)

  • 김원중;김성수;김은주;강성홍
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.4910-4918
    • /
    • 2013
  • 본 연구는 급성심근경색환자의 효율적인 재원일수 관리를 위해 재원일수에 대한 중증도 보정 모형을 개발하고자 하였다. 2004-2009년 퇴원손상심층조사 자료에서 주진단이 I21인 급성심근경색환자 6,074명을 추출하였으며, 모형 개발 시 데이터마이닝 기법(다중회귀분석, 의사결정나무, 신경망 기법)을 적용하였다. 개발된 모형들 중에서 의사결정나무 모형이 가장 우수한 모형으로 판정되어 이를 본 연구의 중증도 보정 모형으로 채택하였다. 급성심근경색 환자의 재원일수의 중증도 보정에 영향을 미치는 주요한 요인은 관상동맥우회술 시행유무, 퇴원 시 사망유무, 동반지수 등 이였으며, 병상규모와 의료기관 소재지 별로 중증도 보정 재원일수와 실제 재원일수에 차이가 있었다. 급성심근경색환자의 재원일수 변이를 줄이고 효율적으로 관리하기 위해서는 개발된 모형에 각 의료기관의 자료를 적용하여 중증도를 보정한 후, 차이가 나는 요인을 규명하여 이를 해결하는 활동이 수행되어야 할 것이다.

Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한 효율적 봇넷 탐지 기법 (An Efficient BotNet Detection Scheme Exploiting Word2Vec and Accelerated Hierarchical Density-based Clustering)

  • 이태일;김관현;이지현;이수철
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.11-20
    • /
    • 2019
  • 수많은 기업체, 기관, 개인 사용자가 대규모 DDos(Distributed Denial of Service)공격에 의한 피해에 노출되고 있다. DDoS 공격은 좀비PC라 불리는 수많은 컴퓨터들과 계층적 지령구조를 좀비PC들을 제어하는 네트워크인 봇넷을 통하여 수행된다. 통상의 악성코드 탐지 소프트웨어나 백신은 멀웨어를 탐지하기 위해서 사전에 심층 분석을 통한 멀웨어 시그니처를 밝혀야 하며, 이를 탐지 소프트웨어나 백신에 업데이트하여야 한다. 이 과정은 방대한 시간과 비용이 소모된다. 본고에서는 인공신경망 모델을 이용하여 주기적인 시그니처 사전 업데이트가 필요 없는 봇넷 탐지기법을 제안한다. 제안하는 인공신경망 모델은 Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한다. 제안기법의 봇넷 탐지성능은 CTU-13 데이터셋을 이용하여 평가하였다. 성능평가 결과, 분류 정확도 99.9%로 기존 방법에 비해 우수한 멀웨어 탐지율을 보인다.

ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구 (A Study of Prediction of Daily Water Supply Usion ANFIS)

  • 이경훈;문병석;강일환
    • 한국수자원학회논문집
    • /
    • 제31권6호
    • /
    • pp.821-832
    • /
    • 1998
  • 본 논문에서는 상수도시설을 효율적으로 운영하는 데 필요한 1일 급수량 수요를 예측하는 방식에 대하여 인공지능(Artificial Inteligence)이라 불리는 퍼지 뉴론(fuzzy neuron)을 이용하여 연구하였다. 퍼지뉴론이란 퍼지정보(fuzzy information)를 입력으로 받아들이고 처리하는 퍼지 신경망을 일컫는 말이다. 본 연구에서는 소속함수와 퍼지규칙을 신경망으로 학습하는 기능인 적응식 학습방법을 통하여 1일 급수량을 예측하였으며 연구대상 지역으로는 광주광역시를 선정하였다. 또한 1일 급수량 예측에 있어서 필요한 변수 선택을 위해 입력자료를 상관분석, 자기상관, 부분자기상관, 교차상관 분석 등을 하였으며 동정된 입력변수는 급수량, 평균기온, 급수인구이다. 먼저 급수량, 평균기온, 급수인구로 모델을 구성하였고, 한편으론 기상청의 기후예보자료를 신뢰할 수 없는 경우에는 급수량을 예측할 수 있도록 급수량 자료만으로 모델을 구성하여 그 유효성을 검증하였다. 제안된 모형식은 사고 등의 인위적인 조작(단수 등)이 가해지는 시기를 포함하고도 실측치와 모형의 예측치와의 오차율이 최대 18.46%, 평균2.36% 이내로 나타나, 모형의 결과는 상수도 시설의 운용 및 급·배수관망의 실시간 제어에 많은 도움을 주리라 생각된다.

  • PDF