• 제목/요약/키워드: Neural system

검색결과 5,489건 처리시간 0.037초

신경회로망을 사용한 비선형 확률시스템 제어에 관한 연구 (A Study on a Stochastic Nonlinear System Control Using Neural Networks)

  • 석진욱;최경삼;조성원;이종수
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.263-272
    • /
    • 2000
  • In this paper we give some geometric condition for a stochastic nonlinear system and we propose a control method for a stochastic nonlinear system using neural networks. Since a competitive learning neural networks has been developed based on the stochastcic approximation method it is regarded as a stochastic recursive filter algorithm. In addition we provide a filtering and control condition for a stochastic nonlinear system called the perfect filtering condition in a viewpoint of stochastic geometry. The stochastic nonlinear system satisfying the perfect filtering condition is decoupled with a deterministic part and purely semi martingale part. Hence the above system can be controlled by conventional control laws and various intelligent control laws. Computer simulation shows that the stochastic nonlinear system satisfying the perfect filtering condition is controllable and the proposed neural controller is more efficient than the conventional LQG controller and the canonical LQ-Neural controller.

  • PDF

카오틱 신경망을 이용한 카오틱 시스템의 모사 (On the Identification of a Chaotic System using Chaotic Neural Networks)

  • 장창화;홍수동김상희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1297-1300
    • /
    • 1998
  • In this paper, we discuss the identification of a chaotic system using chaotic neural networks. Because of selfconnections in neuron itself and interconnections between neurons, chaotic neural networks identifiers show good performance in highly nonlinear dynamics such as chaotic system. Simulation results are presented to demonstrate robustness of chaotic neural networks identifier.

  • PDF

지능알고리즘에 의한 정수장 약품주입제어에 관한 연구 (A Study on Coagulant Feeding Control of the Water Treatment Plant Using Intelligent Algorithms)

  • 김용열;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제9권1호
    • /
    • pp.57-62
    • /
    • 2003
  • It is difficult to determine the feeding rate of coagulant in the water treatment plant, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the genetic-fuzzy system genetic-equation system and the neural network system were used in determining the feeding rate of the coagulant. Fuzzy system and neural network system are excellently robust in multivariables and nonlinear problems. but fuzzy system is difficult to construct the fuzzy parameter such as the rule table and the membership function. Therefore we made the genetic-fuzzy system by the fusion of genetic algorithms and fuzzy system, and also made the feeding rate equation by genetic algorithms. To train fuzzy system, equation parameter and neural network system, the actual operation data of the water treatment plant was used. We determined optimized feeding rates of coagulant by the fuzzy system, the equation and the neural network and also compared them with the feeding rates of the actual operation data.

A PROPOSAL OF ENHANSED NEURAL NETWORK CONTROLLERS FOR MULTIPLE CONTROL SYSTEMS

  • Nakagawa, Tomoyuki;Inaba, Masaaki;Sugawara, Ken;Yoshihara, Ikuo;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.201-204
    • /
    • 1998
  • This paper presents a new construction method of candidate controllers using Multi-modal Neural Network(MNN). To improve a control performance of multiple controller, we construct, candidate controllers which consist of MNN. MNN can learn more complicated function than multilayer neural network. MNN consists of preprocessing module and neural network module. The preprocessing module transforms input signals into spectra which are used as input of the following neural network module. We apply the proposed method to multiple control system which controls the cart-pole balancing system and show the effectiveness of the proposed method.

  • PDF

시스템의 수동성과 신경망을 이용한 전력 시스템의 과도 안정도 제어 (Transient Stability Control of Power System using Passivity and Neural Network)

  • 이정원;이용익;심덕선
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.1004-1013
    • /
    • 1999
  • This paper considers the transient stability problem of power system. The power system model is given as interconnected system consisting of many machines which are described by swing equations. We design a transient stability controller using passivity and neural network. The structure of the neural network controller is derived using a filtered error/passivity approach. In general, a neural network cannot be guaranteed to be passive, but the weight tuning algorithm given here do guarantee desirable passivity properties of the neural network and hence of the closed-loop error system. Moreover proposed controller shows good robustness by simulation for uncertainties in parameters, which can not be shown in the speed gradient method proposed by Fradkov[3,7].

  • PDF

Neural Network Based Rudder-Roll Damping Control System for Ship

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • 한국항해항만학회지
    • /
    • 제31권4호
    • /
    • pp.289-293
    • /
    • 2007
  • In this paper, new application of adaptive neural network to design a ship's Rudder-Roll Damping(RRD) control system is presented Firstly, the ANNAI neural network controller is presented. Secondly, new RRD control system using this neural network approach is developed. It uses two neural network controllers for heading control and roll damping control separately. Finally, Computer simulation of this RRD control system is carried out to compare with a linear quadratic optimal RRD control system; discussions and conclusions are provided. The simulation results show the feasibility of using ANNAI controller for RRD. Also, the necessity of mathematical ship model in designing RRD control system is removed by using NN control technique.

신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명 (Closed Loop System Identification of Steam Generator Using Neural Networks)

  • 박종호;한후석;정길도
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

인공신경망을 이용한 좌심실보조장치의 제어 시뮬레이션 (Control Simulation of Left Ventricular Assist Device using Artificial Neural Network)

  • 김상현;정성택;김훈모
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 1998
  • 본 연구에서 복잡한 비선형적 특성을 갖는 공압식 좌심실보조장치의 모델링과 제어에 인공신경망을 제안하였다. 일반적으로 좌심실보조장치는 비선형이 보상되어야 하는데 인공신경망은 학습능력에 의해 비선형 동적 시스템의 제어에 적용될 수 있다. 인공신경망 모델링을 통해 좌심실 보조장치의 동적 모델을 모델링하고 이를 기반으로 하여 인공신경망 제어기가 설계되었다. 제안된 알고리즘을 이용한 좌심실보조장치의 모델링과 제어성능 및 유효성은 컴퓨터 시뮬레이션에 의해 증명되었다.

  • PDF

Modeling of Convolutional Neural Network-based Recommendation System

  • Kim, Tae-Yeun
    • 통합자연과학논문집
    • /
    • 제14권4호
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.

로봇 Endeffector 인식을 위한 모듈라 신경회로망 (A MNN(Modular Neural Network) for Robot Endeffector Recognition)

  • 김영부;박동선
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.496-499
    • /
    • 1999
  • This paper describes a medular neural network(MNN) for a vision system which tracks a given object using a sequence of images from a camera unit. The MNN is used to precisely recognize the given robot endeffector and to minize the processing time. Since the robot endeffector can be viewed in many different shapes in 3-D space, a MNN structure, which contains a set of feedforwared neural networks, co be more attractive in recognizing the given object. Each single neural network learns the endeffector with a cluster of training patterns. The training patterns for a neural network share the similar charateristics so that they can be easily trained. The trained MNN is less sensitive to noise and it shows the better performance in recognizing the endeffector. The recognition rate of MNN is enhanced by 14% over the single neural network. A vision system with the MNN can precisely recognize the endeffector and place it at the center of a display for a remote operator.

  • PDF