• Title/Summary/Keyword: Neural stem cell differentiation

Search Result 91, Processing Time 0.038 seconds

Transforming Growth Factor-$\alpha$ Increases the Yield of Functional Dopaminergic Neurons from in vitro Differentiated Human Embryonic Stem Cells Induced by Basic Fibroblast Growth Factor

  • Lee, Keum-Sil;Shin, Hyun-Ah;Cho, Hwang-Yoon;Kim, Eun-Young;Lee, Young-Jae;Wang, Kyu-Chang;Kim, Yong-Sik;Lee, Hoon-Taek;Chung, Kil-Saeng
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.102-102
    • /
    • 2003
  • Embryonic stem (ES) cells proliferate extensively in the undifferentiated state and have the potential to differentiate into a variety of cell types in response to various environmental cues. The generation of functional dopaminergic neurons from ES cells is promising for cell replacement therapy to treat Parkinson's disease. We compared the in vitro differentiation potential of pluripotent human embryonic stem (hES, MB03) cells induced with basic fibroblast growth factor (bFGF) or retinoic acid (RA). Both types of treatment resulted in similar neural cell differentiation patterns at the terminal differentiation stage, specifically, 75% neurons and 11% glial cells. Additionally, treatment of hES cells with brain derived neurotrophic factor (BDNF) or transforming growth factor (TGF)- $\alpha$ during the terminal differentiation stage led to significantly increased tyrosine hydroxylase (TH) expression, compared to control (P<0.05). In contrast, no effect was observed on the rate of mature or glutamic acid decarboxylase-positive neurons. Immunostaining and HPLC analyses revealed the higher levels of TH (20.3%) and dopamine in bFGF and TGF-$\alpha$ treated hES cells than in RA or BDNF treated hES cells. The results indicate that TGF-$\alpha$ may be successfully used in the bFGF induction protocol to yield higher numbers of functional dopaminergic neurons from hES cells.

  • PDF

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

Past, Present, and Future of Brain Organoid Technology

  • Koo, Bonsang;Choi, Baekgyu;Park, Hoewon;Yoon, Ki-Jun
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.617-627
    • /
    • 2019
  • Brain organoids are an exciting new technology with the potential to significantly change our understanding of the development and disorders of the human brain. With step-by-step differentiation protocols, three-dimensional neural tissues are self-organized from pluripotent stem cells, and recapitulate the major millstones of human brain development in vitro. Recent studies have shown that brain organoids can mimic the spatiotemporal dynamicity of neurogenesis, the formation of regional neural circuitry, and the integration of glial cells into a neural network. This suggests that brain organoids could serve as a representative model system to study the human brain. In this review, we will overview the development of brain organoid technology, its current progress and applications, and future prospects of this technology.

An Increase in Mesenchymal Stem Cells Expressing Nestin in Bone-Marrow-Derived Primary Cells Stimulates Neurogenic Differentiation in Rat

  • Han, Na Rae;Lee, Hyun;Yun, Jung Im;Kim, Choonghyo;Hwang, Jae Yeon;Park, Kyu Hyun;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.32 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • Mesenchymal stem cells (MSCs) have been considered an alternative source of neuronal lineage cells, which are difficult to isolate from brain and expand in vitro. Previous studies have reported that MSCs expressing Nestin ($Nestin^+$ MSCs), a neuronal stem/progenitor cell marker, exhibit increased transcriptional levels of neural development-related genes, indicating that $Nestin^+$ MSCs may exert potential with neurogenic differentiation. Accordingly, we investigated the effects of the presence of $Nestin^+$ MSCs in bone-marrow-derived primary cells (BMPCs) on enhanced neurogenic differentiation of BMPCs by identifying the presence of $Nestin^+$ MSCs in uncultured and cultured BMPCs. The percentage of $Nestin^+$ MSCs in BMPCs was measured per passage by double staining with Nestin and CD90, an MSC marker. The efficiency of neurogenic differentiation was compared among passages, revealing the highest and lowest yields of $Nestin^+$ MSCs. The presence of $Nestin^+$ MSCs was identified in BMPCs before in vitro culture, and the highest and lowest percentages of $Nestin^+$ MSCs in BMPCs was observed at the third (P3) and fifth passages (P5). Moreover, significantly the higher efficiency of differentiation into neurons, oligodendrocyte precursor cells and astrocytes was detected in BMPCs at P3, compared with P5. In conclusion, these results demonstrate that neurogenic differentiation can be enhanced by increasing the proportion of $Nestin^+$ MSCs in cultured BMPCs.

Inhibition of Proliferation and Neurogenesis of Mouse Subventricular Zone Neural Stem Cells by a Mitochondrial Inhibitor Rotenone (미토콘드리아 억제제 rotenone에 의한 쥐의 뇌실 하 영역 신경 줄기 세포의 증식과 신경 세포로의 분화 억제)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1397-1405
    • /
    • 2018
  • Mitochondria have multiple functions in cells: providing chemical energy, storing cellular $Ca^{2+}$, generating reactive oxygen species, and regulating apoptosis. Through these functions, mitochondria are also involved in the maintenance, proliferation, and differentiation of stem/progenitor cells. In the brain, the subventricular zone (SVZ) is one of the neurogenic regions that contains neural stem cells (NSCs) throughout a lifetime. However, reports on the role of mitochondria in SVZ NSCs are scarce. Here, we show that rotenone, a complex I inhibitor of mitochondria, inhibits the proliferation and differentiation of SVZ NSCs in different ways. In proliferating NSCs, rotenone decreases mitosis as measured through phosphorylated histone H3 detection; moreover, apoptosis is not induced by rotenone at 50 nM. In differentiating NSCs, rotenone blocks neurogenesis and oligodendrogenesis while glial fibrillary acidic protein-positive astrocytes are not affected. Interestingly, in this study there were more cells in the differentiating NSCs treated with rotenone for 4-6 days than in the vehicle control group which was a different effect from the reduced number of cells in the proliferating NSCs. We examined both apoptosis and mitosis and found that rotenone decreased apoptosis as detected by staining cleaved caspase-3 but did not affect mitosis. Our results suggest that functional mitochondria are necessary in both the proliferation and differentiation of SVZ NSCs. Furthermore, mitochondria might be involved in the mitosis and apoptosis that occur during those processes.

Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders

  • Hernandez, Rosa;Jimenez-Luna, Cristina;Perales-Adan, Jesus;Perazzoli, Gloria;Melguizo, Consolacion;Prados, Jose
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.34-44
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.

Differential Expressions of Gap Junction Proteins during Differentiation of Rat Neuronal Stem Cells

  • Yang, Se-Ran;Cho, Sung-Dae;Ahn, Nam-Shik;Jung, Ji-Won;Park, Joon-Suk;Tiep, Nguyen Ba;Park, Ki-Su;Hong, In-Sun;Jo, Eun-Hye;Seo, Min-Seo;Yoon, Byong-Su;Lee, Yong-Soon;Kang, Kyung-Sun
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.1
    • /
    • pp.11-15
    • /
    • 2003
  • Gap junctional intercellular communication (GJIC) plays a key role during development, process of tissue differentiation, and in maintenance of adult tissue homeostasis. Neural stem cells leading to formation of cell clusters termed 'neurospheres', can differentiate into neurons, oligodendrocytes, and astrocytes. We investigated the expression levels and distribution of connexin43 (Cx43) and connexin32 (Cx32), abundant gap junctional protein in neural cells and in neurospheres isolated from rat fetus embryonic day (ED) 17. During differentiation of neurospheres, expression of Cx43 and 32 were increased time-dependently within 72 h, and then decreased at 7 day in western blot analysis. TPA-induced inhibition of GJIC was confirmed by decreased fluorescence by SL/DT assay, and induced hyperphosphorylation of Cx43 while no changes in Cx32 levels in western blot assay. Our results indicate that GJIC may be a crucial role in the differentiation of neuronal stem cell. And this GJIC can be inhibited by TPA through the hyperphosphorylation of Cx43.

  • PDF

Induction of cardiomyocyte-like cells from hair follicle cells in mice

  • Yong-Hee Kim;Bang-Jin Kim;Seok-Man Kim;Sun-Uk Kim;Buom-Yong Ryu
    • International Journal of Molecular Medicine
    • /
    • v.43 no.5
    • /
    • pp.2230-2240
    • /
    • 2019
  • Hair follicles (HFs) are a well-characterized niche for adult stem cells (SCs), and include epithelial and melanocytic SCs. HF cells are an accessible source of multipotent adult SCs for the generation of the interfollicular epidermis, HF structures and sebaceous glands in addition to the reconstitution of novel HFs in vivo. In the present study, it was demonstrated that HF cells are able to be induced to differentiate into cardiomyocyte-like cells in vitro under specific conditions. It was determined that HF cells cultured on OP9 feeder cells in KnockOut-Dulbecco's modified Eagle's medium/B27 in the presence of vascular endothelial growth factors differentiated into cardiomyocyte-like cells that express markers specific to cardiac lineage, but do not express non-cardiac lineage markers including neural stem/progenitor cell, HF bulge cells or undifferentiated spermatogonia markers. These cardiomyocyte-like cells exhibited a spindle- and filament-shaped morphology similar to that presented by cardiac muscles and exhibited spontaneous beating that persisted for over 3 months. These results demonstrate that SC reprogramming and differentiation may be induced without resulting in any genetic modification, which is important for the clinical applications of SCs including tissue and organ regeneration.

Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase (핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase)

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF