Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.065

Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders  

Hernandez, Rosa (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada)
Jimenez-Luna, Cristina (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada)
Perales-Adan, Jesus (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada)
Perazzoli, Gloria (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada)
Melguizo, Consolacion (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada)
Prados, Jose (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada)
Publication Information
Biomolecules & Therapeutics / v.28, no.1, 2020 , pp. 34-44 More about this Journal
Abstract
Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.
Keywords
Mesenchymal stem cells; Nervous system disorders; Cell-based therapy; Neuronal differentiation; Clinical trials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jahan, S., Kumar, D., Kumar, A., Rajpurohit, C. S., Singh, S., Srivastava, A., Pandey, A. and Pant, A. B. (2017) Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. Biochem. Biophys. Res. Commun. 482, 961-967.   DOI
2 Jopling, C., Boue, S. and Izpisua Belmonte, J. C. (2011) Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79-89.   DOI
3 Liu, Y., Yi, X. C., Guo, G., Long, Q. F., Wang, X. A., Zhong, J., Liu, W. P., Fei, Z., Wang, D. M. and Liu, J. (2014) Basic fibroblast growth factor increases the transplantationmediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury. Mol. Med. Rep. 9, 333-339.   DOI
4 Lu, D., Li, Y., Wang, L., Chen, J., Mahmood, A. and Chopp, M. (2001) Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J. Neurotrauma 18, 813-819.   DOI
5 Lu, P., Blesch, A. and Tuszynski, M. H. (2004) Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 77, 174-191.   DOI
6 Lunn, J. S., Sakowski, S. A., Hur, J. and Feldman, E. L. (2011) Stem cell technology for neurodegenerative diseases. Ann. Neurol. 70, 353-361.   DOI
7 Mahla, R. S. (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016, 6940283.   DOI
8 Mahmood, A., Lu, D., Lu, M. and Chopp, M. (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53, 697-702; discussion 702-703.   DOI
9 Mahmood, A., Lu, D., Wang, L. and Chopp, M. (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J. Neurotrauma 19, 1609-1617.   DOI
10 Mareschi, K., Novara, M., Rustichelli, D., Ferrero, I., Guido, D., Carbone, E., Medico, E., Madon, E., Vercelli, A. and Fagioli, F. (2006) Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp. Hematol. 34, 1563-1572.   DOI
11 Maria Ferri, A. L., Bersano, A., Lisini, D., Boncoraglio, G., Frigerio, S. and Parati, E. (2016) Mesenchymal stem cells for ischemic stroke: Progress and possibilities. Curr. Med. Chem. 23, 1598-1608.   DOI
12 Shahbazi, A., Safa, M., Alikarami, F., Kargozar, S., Asadi, M. H. and Joghataei, M. T. (2016) Rapid induction of neural differentiation in human umbilical cord matrix mesenchymal stem cells by cAMPelevating agents. Int. J. Mol. Cell. Med. 5, 167-177.
13 Rafieemehr, H., Kheyrandish, M. and Soleimani, M. (2015) Neuroprotective effects of transplanted mesenchymal stromal cells-derived human umbilical cord blood neural progenitor cells in EAE. Iran. J. Allergy Asthma Immunol. 14, 596-604.
14 Salehi, H., Amirpour, N., Niapour, A. and Razavi, S. (2016) An overview of neural differentiation potential of human adipose derived stem cells. Stem Cell Rev. 12, 26-41.   DOI
15 Scuteri, A., Miloso, M., Foudah, D., Orciani, M., Cavaletti, G. and Tredici, G. (2011) Mesenchymal stem cells neuronal differentiation ability: A real perspective for nervous system repair? Curr. Stem Cell Res. Ther. 6, 82-92.   DOI
16 Shi, Y., Hu, Y., Lv, C. and Tu, G. (2016) Effects of reactive oxygen species on differentiation of bone marrow mesenchymal stem cells. Ann. Transplant. 21, 695-700.   DOI
17 Si, J. W., Wang, X. D. and Shen, S. G. (2015) Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone. World J. Stem Cells 7, 149-159.   DOI
18 Kemp, K., Hares, K., Mallam, E., Heesom, K. J., Scolding, N. and Wilkins, A. (2010) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J. Neurochem. 114, 1569-1580.   DOI
19 Kajiyama, H., Hamazaki, T. S., Tokuhara, M., Masui, S., Okabayashi, K., Ohnuma, K., Yabe, S., Yasuda, K., Ishiura, S., Okochi, H. and Asashima, M. (2010) Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol. 54, 699-705.   DOI
20 Kalladka, D. and Muir, K. W. (2014) Brain repair: Cell therapy in stroke. Stem Cells Cloning 7, 31-44.   DOI
21 Kim, H. S., Choi, D. Y., Yun, S. J., Choi, S. M., Kang, J. W., Jung, J. W., Hwang, D., Kim, K. P. and Kim, D. W. (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J. Proteome Res. 11, 839-849.   DOI
22 Krabbe, C., Zimmer, J. and Meyer, M. (2005) Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS 113, 831-844.   DOI
23 Laroni, A., de Rosbo, N. K. and Uccelli, A. (2015) Mesenchymal stem cells for the treatment of neurological diseases: Immunoregulation beyond neuroprotection. Immunol. Lett. 168, 183-190.   DOI
24 Lewis, C. M. and Suzuki, M. (2014) Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res. Ther. 5, 32.   DOI
25 Liu, Q., Cheng, G., Wang, Z., Zhan, S., Xiong, B. and Zhao, X. (2015) Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene. In Vitro Cell. Dev. Biol. Anim. 51, 319-327.   DOI
26 Nadig, R. R. (2009) Stem cell therapy-Hype or hope? A review. J. Conserv. Dent. 12, 131-138.   DOI
27 Maltman, D. J., Hardy, S. A. and Przyborski, S. A. (2011) Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem. Int. 59, 347-356.   DOI
28 Marei, H. E. S., El-Gamal, A., Althani, A., Afifi, N., Abd-Elmaksoud, A., Farag, A., Cenciarelli, C., Thomas, C. and Anwarul H. (2018) Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J. Cell. Physiol. 233, 936-945.   DOI
29 Morales-Garcia, J. A., Luna-Medina, R., Alonso-Gil, S., Sanz-Sancristobal, M., Palomo, V., Gil, C., Santos, A., Martinez, A. and Perez-Castillo, A. (2012) Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem. Neurosci. 3, 963-971.   DOI
30 Mu, M. W., Zhao, Z. Y. and Li, C. G. (2015) Comparative study of neural differentiation of bone marrow mesenchymal stem cells by different induction methods. Genet. Mol. Res. 14, 14169-14176.   DOI
31 Nagai, A., Kim, W. K., Lee, H. J., Jeong, H. S., Kim, K. S., Hong, S. H., Park, I. H. and Kim, S. U. (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS ONE 2, e1272.   DOI
32 Nakagawa, S. (2010) Involvement of neurogenesis in the action of psychotropic drugs. Nihon Shinkei Seishin Yakurigaku Zasshi 30, 109-113.
33 Nasrallah, H. A., Hopkins, T. and Pixley, S. K. (2010) Differential effects of antipsychotic and antidepressant drugs on neurogenic regions in rats. Brain Res. 1354, 23-29.   DOI
34 Qu, J. and Zhang, H. (2017) Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int. 2017, 5251313.
35 Drela, K., Siedlecka, P., Sarnowska, A. and Domanska-Janik, K. (2013) Human mesenchymal stem cells in the treatment of neurological diseases. Acta Neurobiol. Exp. (Wars.) 73, 38-56.
36 Song, C. H., Honmou, O., Ohsawa, N., Nakamura, K., Hamada, H., Furuoka, H., Hasebe, R. and Horiuchi, M. (2009) Effect of transplantation of bone marrow-derived mesenchymal stem cells on mice infected with prions. J. Virol. 83, 5918-5927.   DOI
37 Squillaro, T., Peluso, G. and Galderisi, U. (2016) Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 25, 829-848.   DOI
38 Sun, T. and Ma, Q. H. (2013) Repairing neural injuries using human umbilical cord blood. Mol. Neurobiol. 47, 938-945.   DOI
39 Achanta, P., Sedora Roman, N. I. and Quinones-Hinojosa, A. (2010) Gliomagenesis and the use of neural stem cells in brain tumor treatment. Anticancer Agents Med. Chem. 10, 121-130.   DOI
40 Dong, X., Pan, R., Zhang, H., Yang, C., Shao, J. and Xiang, L. (2013) Modification of histone acetylation facilitates hepatic differentiation of human bone marrow mesenchymal stem cells. PLoS ONE 8, e63405.   DOI
41 Ferro, F., Spelat, R., Falini, G., Gallelli, A., D'Aurizio, F., Puppato, E., Pandolfi, M., Beltrami, A. P., Cesselli, D., Beltrami, C. A., Ambesi-Impiombato, F. S. and Curcio, F. (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am. J. Pathol. 178, 2299-2310.   DOI
42 Ferroni, L., Gardin, C., Tocco, I., Epis, R., Casadei, A., Vindigni, V., Mucci, G. and Zavan, B. (2013) Potential for neural differentiation of mesenchymal stem cells. Adv. Biochem. Eng. Biotechnol. 129, 89-115.
43 Fila-Danilow, A., Borkowska, P., Paul-Samojedny, M., Kowalczyk, M. and Kowalski, J. (2017) The influence of TSA and VPA on the in vitro differentiation of bone marrow mesenchymal stem cells into neuronal lineage cells: Gene expression studies. Postepy Hig. Med. Dosw. (Online) 71, 236-242.
44 Frese, L., Dijkman, P. E. and Hoerstrup, S. P. (2016) Adipose tissuederived stem cells in regenerative medicine. Transfus. Med. Hemother. 43, 268-274.   DOI
45 Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., Panasuk, A. F., Rudakowa, S. F., Luria, E. A. and Ruadkow, I. A. (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 2, 83-92.
46 Fu, L., Zhu, L., Huang, Y., Lee, T. D., Forman, S. J. and Shih, C. C. (2008) Derivation of neural stem cells from mesenchymal stemcells: Evidence for a bipotential stem cell population. Stem Cells Dev. 17, 1109-1121.   DOI
47 Halder, D., Kim, G. H. and Shin, I. (2015) Synthetic small molecules that induce neuronal differentiation in neuroblastoma and fibroblast cells. Mol. Biosyst. 11, 2727-2737.   DOI
48 Gao, S., Zhao, P., Lin, C., Sun, Y., Wang, Y., Zhou, Z., Yang, D., Wang, X., Xu, H., Zhou, F., Cao, L., Zhou, W., Ning, K., Chen, X. and Xu, J. (2014a) Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable threedimensional scaffolds. Tissue Eng. Part A 20, 1271-1284.   DOI
49 Gao, Y., Bai, C., Wang, K., Sun, B., Guan, W. and Zheng, D. (2014b) All-trans retinoic acid promotes nerve cell differentiation of yolk sac-derived mesenchymal stem cells. Appl. Biochem. Biotechnol. 174, 682-692.   DOI
50 Gu, W., Zhang, F., Xue, Q., Ma, Z., Lu, P. and Yu, B. (2010) Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology 30, 205-217.   DOI
51 Han, Z. C., Du, W. J., Han, Z. B. and Liang, L. (2017) New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed. Mater. Eng. 28, S29-S45.
52 Hasan, A., Deeb, G., Rahal, R., Atwi, K., Mondello, S., Marei, H. E., Gali, A. and Sleiman, E. (2017) Mesenchymal stem cells in the treatment of traumatic brain injury. Front. Neurol. 8, 28.
53 Hawryluk, G. W., Mothe, A., Wang, J., Wang, S., Tator, C. and Fehlings, M. G. (2012) An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 21, 2222-2238.   DOI
54 Gage, F. H. and Temple, S. (2013) Neural stem cells: Generating and regenerating the brain. Neuron 80, 588-601.   DOI
55 Arboleda, D., Forostyak, S., Jendelova, P., Marekova, D., Amemori, T., Pivonkova, H., Masinova, K. and Sykova, E. (2011) Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell. Mol. Neurobiol. 31, 1113-1122.   DOI
56 Ahmadi, N., Razavi, S., Kazemi, M. and Oryan, S. (2012) Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44, 87-94.   DOI
57 Alexanian, A. R. (2015) Epigenetic modulators promote mesenchymal stem cell phenotype switches. Int. J. Biochem. Cell Biol. 64, 190-194.   DOI
58 Alexanian, A. R., Liu, Q. S. and Zhang, Z. (2013) Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels. Int. J. Biochem. Cell Biol. 45, 1633-1638.   DOI
59 Ardeshiry Lajimi, A., Hagh, M. F., Saki, N., Mortaz, E., Soleimani, M. and Rahim, F. (2013) Feasibility of cell therapy in multiple sclerosis: A systematic review of 83 studies. Int. J. Hematol. Oncol. Stem Cell Res. 7, 15-33.
60 Asokan, A., Ball, A. R., Laird, C. D., Hermer, L. and Ormerod, B. K. (2014) Desvenlafaxine may accelerate neuronal maturation in the dentate gyri of adult male rats. PLoS ONE 9, e98530.   DOI
61 Chen, Y. T., Sun, C. K., Lin, Y. C., Chang, L. T., Chen, Y. L., Tsai, T. H., Chung, S. Y., Chua, S., Kao, Y. H., Yen, C. H., Shao, P. L., Chang, K. C., Leu, S. and Yip, H. K. (2011) Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J. Transl. Med. 9, 51.   DOI
62 Bali, P., Lahiri, D. K., Banik, A., Nehru, B. and Anand, A. (2017) Potential for stem cells therapy in Alzheimer's disease: Do neurotrophic factors play critical role? Curr. Alzheimer Res. 14, 208-220.   DOI
63 Bhang, S. H., Lee, Y. E., Cho, S. W., Shim, J. W., Lee, S. H., Choi, C. Y., Chang, J. W. and Kim, B. S. (2007) Basic fibroblast growth factor promotes bone marrow stromal cell transplantation-mediated neural regeneration in traumatic brain injury. Biochem. Biophys. Res. Commun. 359, 40-45.   DOI
64 Boku, S., Nakagawa, S. and Koyama, T. (2010) Glucocorticoids and lithium in adult hippocampal neurogenesis. Vitam. Horm. 82, 421-431.   DOI
65 Borkowska, P., Kowalska, J., Fila-Danilow, A., Bielecka, A. M., Paul-Samojedny, M., Kowalczyk, M. and Kowalski, J. (2015) Affect of antidepressants on the in vitro differentiation of rat bone marrow mesenchymal stem cells into neuronal cells. Eur. J. Pharm. Sci. 73, 81-87.   DOI
66 Budoni, M., Fierabracci, A., Luciano, R., Petrini, S., Di Ciommo, V. and Muraca, M. (2013) The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant. 22, 369-379.   DOI
67 Clement, F., Grockowiak, E., Zylbersztejn, F., Fossard, G., Gobert, S. and Maguer-Satta, V. (2017) Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig. 4, 67.   DOI
68 Croft, A. P. and Przyborski, S. A. (2006) Formation of neurons by nonneural adult stem cells: Potential mechanism implicates an artifact of growth in culture. Stem Cells 24, 1841-1851.   DOI
69 Choi, S. A., Lee, J. Y., Wang, K. C., Phi, J. H., Song, S. H., Song, J. and Kim, S. K. (2012) Human adipose tissue-derived mesenchymal stem cells: Characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur. J. Cancer 48, 129-137.
70 Chun, S. Y., Soker, S., Jang, Y. J., Kwon, T. G. and Yoo, E. S. (2016) Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. J. Korean Med. Sci. 31,171-177.   DOI
71 Wakao, S., Kuroda, Y., Ogura, F., Shigemoto, T. and Dezawa, M. (2012) Regenerative effects of mesenchymal stem cells: Contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cells 1, 1045-1060.   DOI
72 Takeda, Y. S. and Xu, Q. (2015) Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS ONE 10, e0135111.   DOI
73 Teixeira, F. G., Carvalho, M. M., Sousa, N. and Salgado, A. J. (2013) Mesenchymal stem cells secretome: A new paradigm for central nervous system regeneration? Cell. Mol. Life Sci. 70, 3871-3882.   DOI
74 Teven, C. M., Liu, X., Hu, N., Tang, N., Kim, S. H., Huang, E., Yang, K., Li, M., Gao, J. L., Liu, H., Natale, R. B., Luther, G., Luo, Q., Wang, L., Rames, R., Bi, Y., Luo, J., Luu, H. H., Haydon, R. C., Reid, R. R. and He, T. C. (2011) Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011, 201371.
75 Tomasoni, S., Longaretti, L., Rota, C., Morigi, M., Conti, S., Gotti, E., Capelli, C., Introna, M., Remuzzi, G. and Benigni, A. (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22, 772-780.   DOI
76 Ullah, I., Subbarao, R. B. and Rho, G. J. (2015) Human mesenchymal stem cells-current trends and future prospective. Biosci. Rep. 35, e00191.   DOI
77 Wang, N., Xu, Y., Qin, T., Wang, F. P., Ma, L. L., Luo, X. G. and Zhang, T. C. (2013) Myocardin-related transcription factor-A is a key regulator in retinoic acid-induced neural-like differentiation of adult bone marrow-derived mesenchymal stem cells. Gene 523, 178-186.   DOI
78 Woodcock, T. and Morganti-Kossmann, M. C. (2013) The role of markers of inflammation in traumatic brain injury. Front. Neurol. 4, 18.   DOI
79 Wang, S. P., Wang, Z. H., Peng, D. Y., Li, S. M., Wang, H. and Wang, X. H. (2012) Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: Reduced apoptosis and enhanced neuroprotection. Mol. Med. Rep. 6, 848-854.   DOI
80 Woodbury, D., Schwarz, E. J., Prockop, D. J. and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364-370.   DOI
81 Wyse, R. D., Dunbar, G. L. and Rossignol, J. (2014) Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int. J. Mol. Sci. 15, 1719-1745.   DOI
82 Xu, J., Lu, H., Miao, Z. N., Wu, W. J., Jiang, Y. Z., Ge, F., Fang, W. F., Zhu, A. H., Chen, G., Zhou, J. H., Lu, Y. Z., Tang, Z. F. and Wang, Y. (2016) Immunoregulatory effect of neuronal-like cells in inducting differentiation of bone marrow mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 20, 5041-5048.
83 Yan, Z. J., Zhang, P., Hu, Y. Q., Zhang, H. T., Hong, S. Q., Zhou, H. L., Zhang, M. Y. and Xu, R. X. (2013) Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem. Res. 38, 1022-1033.   DOI
84 Ying, C., Hu, W., Cheng, B., Zheng, X. and Li, S. (2012) Neural differentiation of rat adipose-derived stem cells in vitro. Cell. Mol. Neurobiol. 32, 1255-1263.   DOI
85 Yoo, S. W., Kim, S. S., Lee, S. Y., Lee, H. S., Kim, H. S., Lee, Y. D. and Suh-Kim, H. (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp. Mol. Med. 40, 387-397.   DOI
86 Zemel’ko, V. I., Kozhukharova, I. B., Alekseenko, L. L., Domnina, A. P., Reshetnikova, G. F., Puzanov, M. V., Dmitrieva, R. I., Grinchuk, T. M., Nikol’skii, N. N. and Anisimov, S. V. (2013) Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study. Tsitologiia 55, 101-110.
87 Yousef, B., Sanooghi, D., Faghihi, F., Joghataei, M. T. and Latifi, N. (2017) Evaluation of motor neuron differentiation potential of human umbilical cord blood-derived mesenchymal stem cells, in vitro. J. Chem. Neuroanat. 81, 18-26.   DOI
88 Zanni, G., Michno, W., Di Martino, E., Tjarnlund-Wolf, A., Pettersson, J., Mason, C. E., Hellspong, G., Blomgren, K. and Hanrieder, J. (2017) Lithium accumulates in neurogenic brain regions as revealed by high resolution ion imaging. Sci. Rep. 7, 40726.   DOI
89 Zemel’ko, V. I., Kozhukharova, I. V., Kovaleva, Z. V., Domnina, A. P., Pugovkina, N. A., Fridlianskaia, I. I., Puzanov, M. V., Anisimov, S. V., Grinchuk, T. M. and Nikol’skii, N. N. (2014) BDNF secretion in human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue. Tsitologiia 56, 204-211.
90 Zhang, H., Huang, Z., Xu, Y. and Zhang, S. (2006) Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol. Res. 28, 104-112.   DOI
91 Ilic, D. and Polak, J. M. (2011) Stem cells in regenerative medicine: Introduction. Br. Med. Bull. 98, 117-126.   DOI
92 Zhang, Y. J., Zhang, W., Lin, C. G., Ding, Y., Huang, S. F., Wu, J. L., Li, Y., Dong, H. and Zeng, Y. S. (2012) Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats. J. Neurol. Sci. 313, 64-74.   DOI
93 Zhu, Y., Liu, T., Song, K., Ning, R., Ma, X. and Cui, Z. (2009) ADSCs differentiated into cardiomyocytes in cardiac microenvironment. Mol. Cell. Biochem. 324, 117-129.   DOI
94 Herlofsen, S. R., Bryne, J. C., Hoiby, T., Wang, L., Issner, R., Zhang, X., Coyne, M. J., Boyle, P., Gu, H., Meza-Zepeda, L. A., Collas, P., Mikkelsen, T. S. and Brinchmann, J. E. (2013) Genome-wide map of quantified epigenetic changes during in vitro chondrogenic differentiation of primary human mesenchymal stem cells. BMC Genomics 14, 105.   DOI
95 Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M. and Silberstein, L. E. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24, 1030-1041.   DOI
96 Hong, S. Q., Zhang, H. T., You, J., Zhang, M. Y., Cai, Y. Q., Jiang, X. D. and Xu, R. X. (2011) Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury. Neurochem. Res. 36, 2391-2400.   DOI
97 Jaenisch, R. and Young, R. (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582.   DOI