• 제목/요약/키워드: Neural specification

검색결과 32건 처리시간 0.022초

Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향 (The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification)

  • 송진수;진은정
    • 생명과학회지
    • /
    • 제19권10호
    • /
    • pp.1346-1351
    • /
    • 2009
  • Neural crest는 신경계의 발생과정에서 생긴 특정화된 외배엽으로서 말초신경계(peripheral nervous system)의 모든 sensory cells과 peripheral cells, unipolar spinal ganglion cell, cranial sensory ganglia, peripheral nerve의 neurolemmal sheath cells, ganglia의 capsule cells, sympathetic ganglia, chromaffin cells, pigment cell 등의 자율신 경계의 대부분의 세포로 분화 한다. 최근pluripotetic neural crest cells의 운명이 이미 제한되어 있으며, 이러한 fate-restricted crest cells이 neural tube에서 emigration된다고 보고된바 있다. 또한 본 연구자는 Wnt와 Wnt의 antagonist가 neural crest cell의 specification이 일어나는 시기에 발현하여, neural crest cell의 segregation과 differentiation에 직접적으로 관여함을 밝혔다. 이를 보다 명확히 규명하기 위해, 본 연구에서는 neural tube에 Wnt-3a expressing cell의 grafting 혹은 dominant negative GSK construct의 electroporation을 통해 Wnt signaling을 modulation 하여 downstream mediator를 조사하였다. Wnt signaling의 stimulation은 neural crest cell의 melanoblast 로의 commitment를 유도하였으며, 이와 더불어 cadherin 7과 slug의 발현을 조절함을 확인하였다.

COMPARISON OF VARIABLE SELECTION AND STRUCTURAL SPECIFICATION BETWEEN REGRESSION AND NEURAL NETWORK MODELS FOR HOUSEHOLD VEHICULAR TRIP FORECASTING

  • Yi, Jun-Sub
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.599-609
    • /
    • 1999
  • Neural networks are explored as an alternative to a regres-sion model for prediction of the number of daily household vehicular trips. This study focuses on contrasting a neural network model with a regression model in term of variable selection as well as the appli-cation of these models for prediction of extreme observations, The differences in the models regarding data transformation variable selec-tion and multicollinearity are considered. The results indicate that the neural network model is a viable alternative to the regression model for addressing both messy data problems and limitation in variable structure specification.

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

신경망기법을 사용한 콘크리트의 배합요소 추정 (Prediction on the Proportioning of Concrete Mixes Using Neural Network)

  • 김종인;최영화;김인수
    • 한국산업융합학회 논문집
    • /
    • 제4권4호
    • /
    • pp.419-426
    • /
    • 2001
  • Concrete mix proportioning is a process of selecting the right combination of many materials such as cement, fine aggregates, coarse aggregates, water, and admixtures to make concrete satisfying for specification and cost. In determining proportioning of concrete mixes, code information, specification, and the experience of experts are needed. However, all factors regarding mix proportioning factor cannot be considered. Therefore, the final acceptance depends on concrete quality control test results. The proportioning of concrete mixes and the adjustments are somewhat complicated, time-consuming, and uncertain tasks. In this paper, as a tool to predict the factor of the proportioning of concrete mixes, an artificial neural network is used. To consider the varieties of material properties, the standard mixed table of two companies of ready mixed concrete are used. The results show that neural net works is successfully applied to the prediction of concrete mix proportioning factor.

  • PDF

The Ascidian Numb Gene Involves in the Formation of Neural Tissues

  • Ahn, Hong Ryul;Kim, Gil Jung
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권4호
    • /
    • pp.371-378
    • /
    • 2012
  • Notch signaling plays fundamental roles in various animal development. It has been suggested that Hr-Notch, a Notch homologue in the ascidian Halocynthia roretzi, is involved in the formation of peripheral neurons by suppressing the neural fates and promoting the epidermal differentiation. However, roles of Notch signaling remain controversial in the formation of nervous system in ascidian embryos. To precisely investigate functions of Notch signaling, we have isolated and characterized Hr-Numb, a Numb homologue which is a negative regulator of Notch signaling, in H. roretzi. Maternal expression of Hr-Numb mRNAs was detected in egg cytoplasm and the transcripts were inherited by the animal blastomeres. Its zygotic expression became evident by the early neurula stage and the transcripts were detected in dorsal neural precursor cells. Suppression of Hr-Numb function by an antisense morpholino oligonucleotide resulted in larvae with defect in brain vesicle and palps formation. Similar results have been obtained by overexpression of the constitutively activated Hr-Notch forms. Therefore, these results suggest that Hr-Numb is involved in Notch signaling during ascidian embryogenesis.

신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가 (Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft)

  • 이기영;김병수
    • 한국항공운항학회지
    • /
    • 제21권3호
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

xCyp26c Induced by Inhibition of BMP Signaling Is Involved in Anterior-Posterior Neural Patterning of Xenopus laevis

  • Yu, Saet-Byeol;Umair, Zobia;Kumar, Shiv;Lee, Unjoo;Lee, Seung-Hwan;Kim, Jong-Il;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Kim, Jaebong
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.352-357
    • /
    • 2016
  • Vertebrate neurogenesis requires inhibition of endogenous bone morphogenetic protein (BMP) signals in the ectoderm. Blocking of BMPs in animal cap explants causes the formation of anterior neural tissues as a default fate. To identify genes involved in the anterior neural specification, we analyzed gene expression profiles using a Xenopus Affymetrix Gene Chip after BMP-4 inhibition in animal cap explants. We found that the xCyp26c gene, encoding a retinoic acid (RA) degradation enzyme, was upregulated following inhibition of BMP signaling in early neuroectodermal cells. Whole-mount in situ hybridization analysis showed that xCyp26c expression started in the anterior region during the early neurula stage. Overexpression of xCyp26c weakly induced neural genes in animal cap explants. xCyp26c abolished the expression of all trans-/cis-RA-induced posterior genes, but not basic FGF-induced posterior genes. Depletion of xCyp26c by morpholino-oligonucleotides suppressed the normal formation of the axis and head, indicating that xCyp26c plays a critical role in the specification of anterior neural tissue in whole embryos. In animal cap explants, however, xCyp26c morpholinos did not alter anterior-to-posterior neural tissue formation. Together, these results suggest that xCyp26c plays a specific role in anterior-posterior (A-P) neural patterning of Xenopus embryos.

인공신경망을 이용한 고속철도의 최고속도 예측과 구성설계 (U sing Artificial Intelligence in the Configuration Design of a High-Speed Train)

  • 이장용;한순흥
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.222-230
    • /
    • 2003
  • Artificial intelligence has been used in the configuration design stage of high-speed train. The traction system of a high-speed train is composed of transformers, motor blocks, and traction motors of which locations and number in the trainset should be determined in the early stage of the train conceptual design. Components of the traction system are heavy parts in the train, so it gives strong influence to the top speeds and overall train configuration of high-speed trains. Top speeds have been predicted using the neural network with the associated data of the traction system. The neural networks have been learned with data sets of many commercially operated high-speed trains, and the predicted results have been compared with the actual values. The configuration design of the train set of a high-speed train determines the basic specification of the train and layout of the traction system. The neural networks is a useful design tool when there is not sufficient data for the configuration design and we need to use the existing data of other train for the prediction of trainset in development.

Forskolin Effect on the Lineage Specification of Trunk Neural Crest Cells in vitro

  • Jin, Eun-Jung
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.69-74
    • /
    • 2002
  • Recent evidence has suggested that trunk neural crest cell generally assumed to have equivalent differentiation potentials, demonstrate differentiation bias along the anterior/posterior axis. In amphibian and fish, neural crest cells give rise to three chromatophore types, melanophores, xantho-phores, and iridophores. Each pigment cell type has distinct characteristics but there is speculation about the cellular plasticity that exists among them. Neural crest cells migrate along specific routes, ventromedially and dorsolaterally. Neural crest cells that travel dorsolaterally are the first cells to begin migration in the axolotl and are the major contributors to the visible pigment pattern. Many factors and mechanisms that are responsible for guiding migratory neural crest cells along potential pathways or determining their fate remain unknown. A single lineage of the crest, which becomes restricted to one of the three pigment cell types, gives us the opportunity to examine the existence of neural crest stem cell populations and cellular plasticity. Study presented here showed results from recent in vitro studies designed to identify parameters influencing differentiation events of individual neural crest-derived pigment cell lineages. Melanophore production from neural crest explants originating from different levels along the anterior/posterior axis of wild type-axolotl embryos were compared and demonstrate that the differentiation of melanophores is enhanced in subpopulation of neural crest treated with forskolin. Forskolin (an adenylate cyclase activator) increases intracellular CAMP concentration and eventually activates the protein kinase-A signaling pathway. Melanophore number, melanin content, and tyrosinase activity in explants taken from the anterior-most region of the crest increased significantly in response to forskolin treatment. This study suggests implications of region specific influences and developmental regulation in the development of pigment pattern.

Expression of Hr-Erf Gene during Ascidian Embryogenesis

  • Kim, Jung Eun;Lee, Won Young;Kim, Gil Jung
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권4호
    • /
    • pp.389-397
    • /
    • 2013
  • FGF9/16/20 signaling pathway specify the developmental fates of notochord, mesenchyme, and neural cells in ascidian embryos. Although a conserved Ras/MEK/Erk/Ets pathway is known to be involved in this signaling, the detailed mechanisms of regulation of FGF signaling pathway have remained largely elusive. In this study, we have isolated Hr-Erf, an ascidian orthologue of vertebrate Erf, to elucidate interactions of transcription factors involved in FGF signaling of the ascidian embryo. The Hr-Erf cDNA encompassed 3110 nucleotides including sequence encoded a predicted polypeptide of 760 amino acids. The polypeptide had the Ets DNA-binding domain in its N-terminal region. In adult animals, Hr-Erf mRNA was predominantly detected in muscle, and at lower levels in ganglion, gills, gonad, hepatopancreas, and stomach by quantitative real-time PCR (QPCR) method. During embryogenesis, Hr-Erf mRNA was detected from eggs to early developmental stage embryos, whereas the transcript levels were decreased after neurula stage. Similar to the QPCR results, maternal transcripts of Hr-Erf was detected in the fertilized eggs by whole-mount in situ hybridization. Maternal mRNA of Hr-Erf was gradually lost from the neurula stage. Zygotic expression of Hr-Erf started in most blastomeres at the 8-cell stage. At gastrula stage, Hr-Erf was specifically expressed in the precursor cells of brain and mesenchyme. When MEK inhibitor was treated, embryos resulted in loss of Hr-Erf expression in mesenchyme cells, and in excess of Hr-Erf in a-line neural cells. These results suggest that zygotic Hr-Erf products are involved in specification of mesenchyme and neural cells.