• Title/Summary/Keyword: Neural networks model

Search Result 1,885, Processing Time 0.024 seconds

딥 residual network를 이용한 선생-학생 프레임워크에서 힌트-KD 학습 성능 분석 (Performance Analysis of Hint-KD Training Approach for the Teacher-Student Framework Using Deep Residual Networks)

  • 배지훈;임준호;유재학;김귀훈;김준모
    • 전자공학회논문지
    • /
    • 제54권5호
    • /
    • pp.35-41
    • /
    • 2017
  • 본 논문에서는 지식추출(knowledge distillation) 및 지식전달(knowledge transfer)을 위하여 최근에 소개된 선생-학생 프레임워크 기반의 힌트(Hint)-knowledge distillation(KD) 학습기법에 대한 성능을 분석한다. 본 논문에서 고려하는 선생-학생 프레임워크는 현재 최신 딥러닝 모델로 각광받고 있는 딥 residual 네트워크를 이용한다. 따라서, 전 세계적으로 널리 사용되고 있는 오픈 딥러닝 프레임워크인 Caffe를 이용하여 학생모델의 인식 정확도 관점에서 힌트-KD 학습 시 선생모델의 완화상수기반의 KD 정보 비중에 대한 영향을 살펴본다. 본 논문의 연구결과에 따르면 KD 정보 비중을 단조감소하는 경우보다 초기에 설정된 고정된 값으로 유지하는 것이 학생모델의 인식 정확도가 더 향상된다는 것을 알 수 있었다.

확장 베이지안망을 적용한 고위험성 HRCT 영상 분류 (Classification of Very High Concerns HRCT Images using Extended Bayesian Networks)

  • 임채균;정용규
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.7-12
    • /
    • 2012
  • 최근 의료분야에서는 방대한 양의 정보를 효과적으로 처리하기 위하여 의사결정트리, 신경망, 베이지안망 등을 비롯한 각종 데이터마이닝 기법의 적용 방안을 연구하고 있다. 또한 환자의 기본적인 신상정보나 과거력, 가족력과 같은 정보 이외에도 MRI, HRCT 등의 영상정보를 추가적으로 수집하고 진단에 활용함으로써 질병진단의 정확도 향상을 도모하는 것이 일반적인 현황이다. 하지만 실제 상황에서는 결과에 영향을 미치는 다량의 변수가 존재하므로 특정 데이터마이닝 기법을 통하여 얻을 수 있는 정보가 상당히 제한적이라고 볼 수 있다. 그뿐만 아니라 촬영된 의료영상도 부수적으로 진단에 긍정적인 영향을 줄 수는 있지만, 주관적인 판단 비중이 높아 자동화된 시스템으로 처리하기가 난해한 문제이다. 이에 따라 현실의 복잡한 상황에서 상대적으로 대처가 유리하고 다변량 확률적인 모델을 기반으로 하는 베이지안망에서 K2나 TAN 등으로 탐색 알고리즘을 개선한 확장 모델이 제안되었다. 이 때, 적용되는 탐색 알고리즘의 종류에 따라 그 성능이 크게 좌우되는 확장 베이지안망의 특성상, 각 기법에 대한 성능과 적합성의 사실적인 평가가 요구된다. 따라서 본 논문에서는 확장 베이지안망에서 질병 진단에 대한 동일한 데이터를 이용하여 실험을 수행하였으며, K2, TAN과 같은 탐색 알고리즘에 변화를 주며 분류 정확도를 측정하였다. 실험에서는 10-fold 교차검증을 수행한 결과분석을 기반으로 성능을 비교평가하고, 발병 위험성이 높은 환자에 대한 HRCT 영상을 분류하여 고위험성의 데이터를 식별 가능하도록 하였다.

장소 정보를 학습한 딥하이퍼넷 기반 TV드라마 소셜 네트워크 분석 (Social Network Analysis of TV Drama via Location Knowledge-learned Deep Hypernetworks)

  • 남장군;김경민;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권11호
    • /
    • pp.619-624
    • /
    • 2016
  • Social-aware video는 자유로운 스토리 전개를 통해 인물들간의 관계뿐만 아니라 경제, 정치, 문화 등 다양한 지식을 사람에게 전달해주고 있다. 특히 장소에 따른 사람들간의 대화 습성과 행동 패턴은 사회관계를 분석하는데 있어서 아주 중요한 정보이다. 하지만 멀티모달과 동적인 특성으로 인해 컴퓨터가 비디오로부터 자동으로 지식을 습득하기에는 아직 많은 어려움이 있다. 이러한 문제점들을 해결하기 위해 기존의 연구에서는 딥하이퍼넷 모델을 사용하여 드라마 등장인물의 시각과 언어 정보를 기반으로 계층적 구조를 사용해 소셜 네트워크를 분석하였다. 하지만 장소 정보를 사용하지 않아 전반적인 스토리로부터 소셜 네트워크를 분석할 수밖에 없었다. 본 논문에서는 기존 연구를 바탕으로 장소 정보를 추가하여 각 장소에서의 인물 특성을 분석해 보았다. 본 논문에서는 총 4400분 분량의 TV드라마 "Friends"를 사용했고 C-RNN모델을 통해 등장인물을 인식하였으며 Bag of Features로 장소를 분류하였다. 그리고 딥하이퍼넷 모델을 통해 자동으로 소셜 네트워크를 생성하였고 각 장소에서의 인물 관계 변화를 분석하였다.

비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 2. 불확실성 분석에 의한 최적모형의 구축 (Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranpiration Time Series. 2. Optimal Model Construction by Uncertainty Analysis)

  • 김성원;김형수
    • 한국수자원학회논문집
    • /
    • 제40권1호
    • /
    • pp.89-99
    • /
    • 2007
  • 본 논문에서는 본 연구논제(2007)에서 개발된 COMBINE-GRNNM-GA(Type-1)으로부터 최적형태의 구조를 가진 모형을 구성하고, 입력층노드의 기상인자를 제거하기 위하여 불확실성 분석을 실시하였다. 훈련과정중에 가장 최소의 평활인자를 가진 입력층변수는 COMBINE-GRNNM-GA(Type-1)에서 제거되었으며, 변형된 COMBINE-GRNNM-GA(Type-1)은 기상학적 변수의 새로운 최소 평활인자를 구하기 위하여 재훈련된다. 최소 평활인자를 가지는 입력층 노드는 모형결과치에 대하여 가장 유용하지 않는 기상인자인 것을 암시하고 있다. 게다가, 민감하거나 민감하지 않은 기상인자들이 불확실성 분석을 통하여 선택되어진다. 최적 COMBINE-GRNNM-GA(Type-1)은 최소 비용과 노력으로 결측 혹은 미계측 증발접시 증발량과 계측되고 있지 않은 알팔파 기준증발산량을 산정하기 위하여 개발되었다 마지막으로 치적 COMBINE-GRNNM-GA(TyPe-1)을 이용하여 우리나라에서 전반적인 가뭄해석 및 관개배수 시스템 구축을 위한 참고자료를 제공할 수 있는 증발접시 증발량 지도 및 알팔파 기준증발산량 지도도 구축되어질 수 있다.

적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성 (Multidimensional data generation of water distribution systems using adversarially trained autoencoder)

  • 김세형;전상훈;정동휘
    • 한국수자원학회논문집
    • /
    • 제56권7호
    • /
    • pp.439-449
    • /
    • 2023
  • 최근 계측 기술의 발전으로 압력계와 유량계 등 다양한 센서를 설치하여 상수도관망의 상태를 효과적으로 파악할 수 있게 되었으나, 도시가 광범위하게 개발됨에 따라 계측 신뢰도에 영향을 미치는 변수는 다양해지고 있다. 특히 상수도관망 분석에 중요한 영향력을 가지는 수요 데이터의 경우 직접 계측의 난이도가 높고 결측이 발생하기 쉬운 것으로 알려져 데이터 생성의 중요도가 증가하고 있다. 본 논문에서는 상수도관망에서 누락된 데이터를 정확하게 생성하기 위해 생성적 딥러닝 모델에 기반한 적대적 학습 기반 오토인코더(ATAE) 모델을 제안한다. 제안된 모델은 판별 신경망과 생성 신경망의 두 가지 신경망의 적대적 학습을 사용하여 압력 데이터로부터 수요 데이터를 생성한다. 학습이 완료된 ATAE 모델의 생성 신경망은 관망의 계측되는 압력 데이터가 존재하는 경우, 그로부터 추정된 관망 수요 데이터를 제공할 수 있다. ATAE 모델은 미국 텍사스주 오스틴의 실제 상수도망에 적용되어 성능이 검증되었다. 수요 및 압력 시계열 데이터의 불확실성 정도에 따른 ATAE 예측 결과의 정확도를 비교하여 데이터 불확실성의 영향을 분석하였으며, 또한 수요 수준에 따른 데이터 수집 기간별 생성 결과를 비교하여 이에 따른 데이터 생성 성능을 검토하였다.

실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계 (A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image)

  • 오성권;석진욱;김기상;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계 (Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures)

  • 윤정방;김상범
    • 한국지진공학회논문집
    • /
    • 제3권3호
    • /
    • pp.63-74
    • /
    • 1999
  • 대형구조물의 진동감소를 위한 슬라이딩 모드 퍼지 제어기(Sliding Mode Fuzzy Control SMFC)에 대하여 연구하였다 본 제어기에 사용된 퍼지 추론기의 규칙은 비선형 제어기법의 하나인 슬라이딩 모드 제어기를 기반으로 하여 구성되었다 그결과 제어기의 퍼지성은 제어시스템을 시스템 계수의 불확실성과 구조물에 작용되는 외부하중의 불확실성에 대하여 강인한 성질은 갖게 하였으며 제어 규칙의 비선형성으로 인하여 제어기는 선형제어기에 비하여 보다 효율적인 되었다 복잡한 수학 해석에 기반한 종래의 제어기법에 비하여 퍼지 이론에 기반한 본 제어기법은 제어기의 설계절차가 매우 편리하다는 장점을 갖게 된다. 제안된 제어기법의 검증을 위하여 미국 토목학회 산하 구조제어위원회(ASCE Committee on Structural Control)에서 주도한 벤치마크 문제에 대하여 적용시켜 보았다 본 연구의 제어결과를 다른 연구자들에 의하여 발표된 {{{{ ETA _mixed _2$\infty$ }}, optimal polynomial control neural networks control 슬라이딩 모드 제어의 벤치마크 결과와 비교하였으며 그 결과 제안된 제어기법이 구조물의 진동을 매우 효율적으로 감소시키며 제어기의 설계절차가 쉽고 편리함을 확일 할 수 있었다.

  • PDF

정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로 (Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer)

  • 신예지;한대현;임정호
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1405-1423
    • /
    • 2021
  • 강우 현상은 물 순환과 에너지 순환의 주요 요소 중 하나이며 강우량 추정은 수자원 확보와 수재해 예측 및 피해 감축에 매우 중요한 역할을 한다. 위성 기반 강우량 추정은 시공간적으로 고해상도인 자료를 통하여 넓은 지역을 연속적으로 감시할 수 있다는 장점이 있다. 본 연구에서는 Himawari-8 Advanced Himawari Imager(AHI) 수증기 채널(6.7 ㎛), 적외 채널(10.8 ㎛)과 기상 레이더 Column Max (CMAX) 합성장을 이용하여 기계학습 기반 정량적 강우량 추정 모델을 개발하였다. 기계학습 기법으로는 랜덤 포레스트(Random Forest, RF)를 사용하였으며 기상 레이더 반사도(dBZ)와 Z-R식으로 변환한 강우강도(mm/hr)를 타겟으로 하는 모델을 구축하여 비교하였다. 레이더 강우강도를 통해 검증하였을 때 임계성공지수(Critical Success Index, CSI)는 0.34, Mean-Absolute-Error (MAE) 4.82 mm/hr였다. GeoKompsat-2(GK-2A) 강우강도 산출물, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) 산출물과 비교하였을 때 강우 유무 분류에서 CSI 21.73%, 10.81%, 강우강도 정량적 평가에서 MAE 31.33%, 23.49% 높은 성능을 보였다. 강우량 산출물을 지도화 한 결과, 실제 강우강도 분포와 유사한 분포를 모의하여 기존 산출물 대비 높은 정확도의 강우량을 추정했다.

FT NIR 분광법 및 이진분류 머신러닝 방법을 이용한 소나무 종자 발아 예측 (Prediction of Germination of Korean Red Pine (Pinus densiflora) Seed using FT NIR Spectroscopy and Binary Classification Machine Learning Methods)

  • 김용율;구자정;구다은;한심희;강규석
    • 한국산림과학회지
    • /
    • 제112권2호
    • /
    • pp.145-156
    • /
    • 2023
  • 본 연구에서는 -18℃ 및 4℃에서 18년간 저장된 소나무 종자 963개에 대해 FT NIR 스펙트럼을 조사하여 7개 머신러닝 방법(XGBoost, Boosted Tree, Bootstrap Forest, Neural Networks, Decision Tree, Support Vector Machine, PLS-DA)을 이용한 종자발아 예측모델을 만들고, 그 성능을 비교하였다. XGBoost 및 Boosted Tree 모델의 예측성능이 가장 우수하였으며, 정확도, 오분류율 및 AUC 값은 각각 0.9722, 0.0278, 0.9735과 0.9653, 0.0347, 0.9647이었다. 2개 모델에서 종자발아 유무를 예측하는 데 있어 상대적 중요도가 높았던 54개 파수 변수들에 대한 파장대는 크게 6개(811~1,088 nm, 1,137~1,273 nm, 1,336~1,453 nm, 1,666~1,671 nm, 1,879~2,045 nm, 2,058~2,409 nm) 그룹으로 나눌 수 있었으며, 방향족 아미노산, 셀룰로스, 리그닌, 전분, 지방산 및 수분과 관련된 것으로 추정되었다. 이상의 결과를 종합할 때, 본 연구에서 얻어진 FT NIR 스펙트럼 데이터과 2개의 머신러닝 모델은 소나무 저장종자의 발아 유무를 정확도 96% 이상으로 예측할 수 있기에 장기저장 종자 유전자원의 비파괴적 활력검정에 유용하게 활용될 수 있을 것으로 생각된다.

Automated quality characterization of 3D printed bone scaffolds

  • Tseng, Tzu-Liang Bill;Chilukuri, Aditya;Park, Sang C.;Kwon, Yongjin James
    • Journal of Computational Design and Engineering
    • /
    • 제1권3호
    • /
    • pp.194-201
    • /
    • 2014
  • Optimization of design is an important step in obtaining tissue engineering scaffolds with appropriate shapes and inner micro-structures. Different shapes and sizes of scaffolds are modeled using UGS NX 6.0 software with variable pore sizes. The quality issue we are concerned is the scaffold porosity, which is mainly caused by the fabrication inaccuracies. Bone scaffolds are usually characterized using a scanning electron microscope, but this study presents a new automated inspection and classification technique. Due to many numbers and size variations for the pores, the manual inspection of the fabricated scaffolds tends to be error-prone and costly. Manual inspection also raises the chance of contamination. Thus, non-contact, precise inspection is preferred. In this study, the critical dimensions are automatically measured by the vision camera. The measured data are analyzed to classify the quality characteristics. The automated inspection and classification techniques developed in this study are expected to improve the quality of the fabricated scaffolds and reduce the overall cost of manufacturing.