• 제목/요약/키워드: Neural networks model

검색결과 1,885건 처리시간 0.027초

지식기반형 TBM 터널 세그먼트 라이닝 설계 프로그램의 개발 및 적용 (Development and implementation of a knowledge based TBM tunnel segment lining design program)

  • 정용준;유충식
    • 한국터널지하공간학회 논문집
    • /
    • 제16권3호
    • /
    • pp.321-339
    • /
    • 2014
  • 본 논문에서는 인공신경망 기술을 이용한 TBM 터널 세그먼트 라이닝의 설계 시스템 개발에 관한 내용을 다루었다. 먼저 개발 시스템에 대한 개념 및 개발 과정과 시스템을 구성하는 각 요소기술 및 개별 모듈 개발에 관한 내용을 기술하였다. 본 시스템의 요소기술인 ANN-기반의 세그먼트 라이닝 부재력 예측 시스템에 대해 그 개념과 ANN 학습과정 및 검증과정을 기술하였다. ANN-기반의 세그먼트 라이닝 부재력 예측은 유한요소해석을 토대로 구축한 DB를 ANN을 통해 일반화 한 후 개발된 엔진을 세부 모듈에 접목시켜 별도의 해석 없이 유사 단면 혹은 현장에 적용이 가능하도록 하였다. 또한 해석 대상 단면에 대하여 상용 유한요소해석 프로그램과 연계하여 해석 Input파일의 자동생성이 가능하도록 하였으며 유한요소해석 결과를 통한 단면 검토가 가능하도록 하였다.

Control of pH Neutralization Process using Simulation Based Dynamic Programming (ICCAS 2003)

  • Kim, Dong-Kyu;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2617-2622
    • /
    • 2003
  • The pH neutralization process has long been taken as a representative benchmark problem of nonlinear chemical process control due to its nonlinearity and time-varying nature. For general nonlinear processes, it is difficult to control with a linear model-based control method so nonlinear controls must be considered. Among the numerous approaches suggested, the most rigorous approach is the dynamic optimization. However, as the size of the problem grows, the dynamic programming approach is suffered from the curse of dimensionality. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach was proposed by Bertsekas and Tsitsiklis (1996). The NDP approach is to utilize all the data collected to generate an approximation of optimal cost-to-go function which was used to find the optimal input movement in real time control. The approximation could be any type of function such as polynomials, neural networks and etc. In this study, an algorithm using NDP approach was applied to a pH neutralization process to investigate the feasibility of the NDP algorithm and to deepen the understanding of the basic characteristics of this algorithm. As the global approximator, the neural network which requires training and k-nearest neighbor method which requires querying instead of training are investigated. The global approximator requires optimal control strategy. If the optimal control strategy is not available, suboptimal control strategy can be used even though the laborious Bellman iterations are necessary. For pH neutralization process it is rather easy to devise an optimal control strategy. Thus, we used an optimal control strategy and did not perform the Bellman iteration. Also, the effects of constraints on control moves are studied. From the simulations, the NDP method outperforms the conventional PID control.

  • PDF

LSTM 신경망을 활용한 맥락 기반 모바일 사용자 인증 기법 (Context-Aware Mobile User Authentication Approach using LSTM networks)

  • 남상진;김순태;신정훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.11-18
    • /
    • 2020
  • 본 연구에서는 모바일 환경에서의 기존 맥락인증기법의 부족한 성능을 보완하고자 한다. 사용된 데이터는 GPS, CDR(Call Detail Record), App usage이며 GPS의 처리과정에서 인구밀집지역의 타인을 세밀하게 구분하고자 GPS밀도에 따른 지역구분을 시행하였다. 또한 전처리에서 데이터 수집에서 발생할 수 있는 결측치를 처리한다. 인증 모델은 두 개의 LSTM(Long-Short Term Memory)와 그들 결과를 종합하는 하나의 ANN(Artificial Neural Network)로 구성하며 이를 통해 최종적으로 인증 점수를 산출한다. 본 논문에서는 기존 연구와의 정확도를 비교하고 타인을 구별해내는데 필요한 인증 시도 횟수를 비교하여 평균 11.6%의 정확도 향상과 검증 데이터의 약 60%에 대하여 더 적은 시도에 구별해 낼 수 있었다.

CNN의 컨볼루션 레이어, 커널과 정확도의 연관관계 분석 (Association Analysis of Convolution Layer, Kernel and Accuracy in CNN)

  • 공준배;장민석
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1153-1160
    • /
    • 2019
  • 본 논문에서는 CNN의 컨볼루션 레이어 개수 및 커널의 크기와 개수가 CNN에 어떠한 영향을 끼치는지 실험을 통해 알아보기 위해 진행하였다. 또한 분석을 위해 일반적인 CNN도 실험하여 실험에 사용된 CNN과 비교하였다. 분석에 사용될 신경망들은 CNN을 기반으로 하며 각각의 실험모델들은 레이어 개수, 커널의 크기 및 개수를 일정한 값으로 고정해 실험을 진행하였다. 모든 실험에는 2계층의 완전연결계층을 고정으로 사용하였다. 다른 변수들은 모두 동일한 값을 주어 실험하였다. 분석결과 레이어의 수가 작을 경우 커널의 크기 및 개수와 상관없이 데이터의 분산 값이 작아 견고한 정확도를 보여주었다. 레이어의 수가 커질수록 정확도도 증가됐으나 일정 수치 이상부턴 오히려 정확도가 내려갔으며 분산 값도 커져 정확도 편차가 크게 나타났다. 커널의 개수는 다른 변수보다 학습속도에 큰 영향을 끼쳤다.

ML/MMSE를 이용한 HMM-Net 분류기의 학습에 대한 실험적 고찰 (An Empiricl Study on the Learnign of HMM-Net Classifiers Using ML/MMSE Method)

  • 김상운;신성효
    • 전자공학회논문지C
    • /
    • 제36C권6호
    • /
    • pp.44-51
    • /
    • 1999
  • HMM-Net은 은닉 마르코프 모델(HMM)의 계산과정을 신경망 구조로 구현한 것으로, HMM이 갖고 있는 시계열 모델링 능력과 신경망이 갖고 있는 우수한 변별력을 결합한 것이다. HMM-Net 분류기를 학습하는 방법으로는 HMM의 학습에 이용되는 最尤法(ML)과 신경망 학습의 最小二乘誤差法(MMSE)를 적용할 수 있다. 이들 중 ML이 MMSE보다 안정된 학습을 보장하는 반면 초기 학습조건을 적절하게 설정하였을 경우에는 MMSE가 ML보다 우수하다고 알려져 있다[3]. 따라서 이 논문에서는 먼저 ML을 이용하여 초기학습을 수행한 다음 보다 학습성능이 우수한 MMSE로 바꾸어 최적 또는 준최적으로 학습하는 하이브리드 학습법(ML/MMSE)을 제안한다. 실험용 시계열 패턴으로 /0/부터 /9/까지의 고립 숫자음을 이용하여 실험한 결과, 제안한 방법이 학습특성 및 인식률면에서 ML이나 MMSE만을 이용하는 기존의 방법보다 우수하였음을 확인하였다.

  • PDF

신경과학적 관점으로 본 작업치료에서 동물 모델의 필요성 (What is the Potential of Animal Models to Inform Occupational Therapy Theories and Interventions From the Perspective of Neuroscience?)

  • 박지혁
    • 재활치료과학
    • /
    • 제1권1호
    • /
    • pp.39-56
    • /
    • 2012
  • 서론 : 동물 연구는 작업치료에 직접적으로 적용할 수 없으나, 인간을 대상으로 한 연구와 함께 작업치료의 이론과 임상에 필수적인 지식을 제공한다. 본 논문의 목적은 신경과학적 관점에서 동물모델이 작업치료의 이론과 임상에 어떠한 가능성을 가져다 줄 수 있는지를 살펴보는 것이다. 본론 : 동물 모델을 통해 얻은 지식은 뇌신경 질환의 기전과 관련된 신경 회로에 대한 이해를 돕는다. 이러한 지식을 바탕으로, 연구자들은 뇌신경 질환에 대한 여러 가지 가정들을 동물 모델을 통해 확인해 볼 수 있다. 또한, 여러 동물 실험들을 통해 쌓인 지식들은 인간에게 적용할 수 있는 새로운 치료적 접근들을 제시해 줄 수 있으며 치료에 대한 효율성을 높여줄 수 있다. 결론 : 동물 모델을 통해 얻은 지식은 뇌신경 질환의 기전과 관련된 신경 회로에 대한 이해를 돕는다. 이러한 지식을 바탕으로, 연구자들은 뇌신경 질환에 대한 여러 가지 가정들을 동물 모델을 통해 확인해 볼 수 있다. 또한, 여러 동물 실험들을 통해 쌓인 지식들은 인간에게 적용할 수 있는 새로운 치료적 접근들을 제시해 줄 수 있으며 치료에 대한 효율성을 높여줄 수 있다.

k-익명화 알고리즘에서 기계학습 기반의 k값 예측 기법 실험 및 구현 (Experiment and Implementation of a Machine-Learning Based k-Value Prediction Scheme in a k-Anonymity Algorithm)

  • ;장성봉
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권1호
    • /
    • pp.9-16
    • /
    • 2020
  • 빅 데이터를 연구 목적으로 제3자에게 배포할 때 프라이버시 정보를 보호하기 위해서 k-익명화 기법이 널리 사용되어 왔다. k-익명화 기법을 적용할 때, 해결 해야할 어려운 문제 중의 하나는 최적의 k값을 결정하는 것이다. 현재는 대부분 전문가의 직관에 근거하여 수동으로 결정되고 있다. 이러한 방식은 익명화의 성능을 떨어뜨리고 시간과 비용을 많이 낭비하게 만든다. 이러한 문제점을 해결하기 위해서 기계학습 기반의 k값 결정방식을 제안한다. 본 논문에서는 제안된 아이디어를 실제로 적용한 구현 및 실험 내용에 대해서 서술 한다. 실험에서는 심층 신경망을 구현하여 훈련하고 테스트를 수행 하였다. 실험결과 훈련 에러는 전형적인 신경망에서 보여지는 패턴을 나타냈으며, 테스트 실험에서는 훈련에러에서 나타나는 패턴과는 다른 패턴을 보여주고 있다. 제안된 방식의 장점은 k값 결정시 시간과 비용을 줄일 수 있다는 장점이 있다.

데이터마이닝 기법을 이용한 효율적인 DRG 확인심사대상건 검색방법 (Efficient DRG Fraud Candidate Detection Method Using Data Mining Techniques)

  • 이중규;조민우;박기동;이무송;이상일;김창엽;김용익;홍두호
    • Journal of Preventive Medicine and Public Health
    • /
    • 제36권2호
    • /
    • pp.147-152
    • /
    • 2003
  • Objectives : To develop a Diagnosis-Related Group (DRG) fraud candidate detection method, using data mining techniques, and to examine the efficiency of the developed method. Methods ; The Study included 79,790 DRGs and their related claims of 8 disease groups (Lens procedures, with or without, vitrectomy, tonsillectomy and/or adenoidectomy only, appendectomy, Cesarean section, vaginal delivery, anal and/or perianal procedures, inguinal and/or femoral hernia procedures, uterine and/or adnexa procedures for nonmalignancy), which were examined manually during a 32 months period. To construct an optimal prediction model, 38 variables were applied, and the correction rate and lift value of 3 models (decision tree, logistic regression, neural network) compared. The analyses were peformed separately by disease group. Results : The correction rates of the developed method, using data mining techniques, were 15.4 to 81.9%, according to disease groups, with an overall correction rate of 60.7%. The lift values were 1.9 to 7.3 according to disease groups, with an overall lift value of 4.1. Conclusions : The above findings suggested that the applying of data mining techniques is necessary to improve the efficiency of DRG fraud candidate detection.

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

Split-Attention 백본 네트워크를 활용한 차선 인식에 관한 연구 (A Study on Lane Detection Based on Split-Attention Backbone Network)

  • 송인서;이선우;권장우;원종훈
    • 한국ITS학회 논문지
    • /
    • 제19권5호
    • /
    • pp.178-188
    • /
    • 2020
  • 본 논문에서는 split-attention 네트워크를 백본으로 특징을 추출하는 차선인식 CNN 네트워크를 제안한다. split-attention은 CNN의 특징 추출 과정에서 feature map의 각 channel에 가중치를 부여하는 방법으로, 빠르게 변화하는 자동차의 주행 환경에서 안정적으로 이미지의 특징을 추출할 수 있다. Tusimple 데이터 셋을 활용하여 본 논문에서 제안하는 네트워크를 학습·평가하였으며, 백본 네트워크의 레이어 수에 따른 성능 변화를 비교·분석 하였다. 평가 결과 최대 96.26%의 정확도로 최신 연구에 준하는 결과를 얻었으며, FP의 경우 0.0234(2.34%)로 비교 연구 중 가장 좋은 결과를 보여준다. 따라서, 실제 차량의 주행 환경 등에서도 본 연구에서 제안하는 모델을 사용하여 오인식 없이 안정적인 차선 인식이 가능하다.