• 제목/요약/키워드: Neural network model

검색결과 4,655건 처리시간 0.041초

CNN 기법을 활용한 터널 암판정 예측기술 개발 (Rock Classification Prediction in Tunnel Excavation Using CNN)

  • 김하영;조래훈;김규선
    • 한국지반공학회논문집
    • /
    • 제35권9호
    • /
    • pp.37-45
    • /
    • 2019
  • 터널 굴착 시 신속한 막장면 상태 파악 및 적절한 지보패턴 결정은 터널 붕락사고의 예방 및 안정적인 굴진에 매우 중요하다. 본 연구에서는 딥러닝 기법을 활용하여 막장면 상태에 따른 암반상태 분류를 신속하게 결정할 수 있는 기술을 개발하였으며, CNN 기법을 이용한 암반상태 분류방법 및 예측 정확도 개선 방법 등을 제시하고 있다. 수 만개의 이미지가 사전 학습된 VGG16 모델을 알고리즘으로 적용하였고, 1,469개의 터널 막장면 이미지에 대한 학습을 통하여 5개 등급으로 암반상태를 분류하였다. 본 연구에서의 예측 정확도는 최대 83.9% 수준을 나타내었으며, 향후 추가적인 이미지 축적을 통해 암반상태 평가자에 따른 편차를 줄인 객관적이고 정량적 암반상태 분류방법으로 활용 가능할 것으로 판단된다.

CycleGAN을 이용한 야간 상황 물체 검출 알고리즘 (CycleGAN-based Object Detection under Night Environments)

  • 조상흠;이용;나재민;김영빈;박민우;이상환;황원준
    • 한국멀티미디어학회논문지
    • /
    • 제22권1호
    • /
    • pp.44-54
    • /
    • 2019
  • Recently, image-based object detection has made great progress with the introduction of Convolutional Neural Network (CNN). Many trials such as Region-based CNN, Fast R-CNN, and Faster R-CNN, have been proposed for achieving better performance in object detection. YOLO has showed the best performance under consideration of both accuracy and computational complexity. However, these data-driven detection methods including YOLO have the fundamental problem is that they can not guarantee the good performance without a large number of training database. In this paper, we propose a data sampling method using CycleGAN to solve this problem, which can convert styles while retaining the characteristics of a given input image. We will generate the insufficient data samples for training more robust object detection without efforts of collecting more database. We make extensive experimental results using the day-time and night-time road images and we validate the proposed method can improve the object detection accuracy of the night-time without training night-time object databases, because we converts the day-time training images into the synthesized night-time images and we train the detection model with the real day-time images and the synthesized night-time images.

IoT센서로 수집된 균질 시간 데이터를 이용한 기계학습 기반의 품질관리 및 데이터 보정 (Machine Learning-based Quality Control and Error Correction Using Homogeneous Temporal Data Collected by IoT Sensors)

  • 김혜진;이현수;최병진;김용혁
    • 한국융합학회논문지
    • /
    • 제10권4호
    • /
    • pp.17-23
    • /
    • 2019
  • 본 논문은 온도 등 7 가지의 IoT 센서에서 수집된 기상데이터의 각 기상요소에 대하여 품질관리(Quality Control; QC)를 하였다. 또한, 우리는 측정된 값에 오류가 있는 데이터를 기계학습으로 의미있게 추정하는 방법을 제안한다. 수집된 기상데이터를 기본 QC 결과를 바탕으로 오류 데이터를 선형 보간하여 기계학습 QC를 진행하였으며, 기계학습 기법으로는 대표적인 서포트벡터회귀, 의사결정테이블, 다층퍼셉트론을 사용했다. 기본 QC의 적용 유무에 따라 비교해 보았을 때, 우리는 기본 QC를 거쳐 보간한 기계학습 모델들의 평균절대오차(MAE)가 21% 낮은 것을 확인할 수 있었다. 또한, 기계학습 기법에 따라 비교하여 서포트벡터회귀 모델을 적용하였을 때가, 모든 기상 요소에 대하여 MAE가 평균적으로 다층신경망은 24%, 의사결정테이블은 58% 낮은 것을 알 수 있었다.

문장에 포함된 외국어의 자연스러운 발음 표현을 위한 LSTM 방법 (An LSTM Method for Natural Pronunciation Expression of Foreign Words in Sentences)

  • 김성돈;정재희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권4호
    • /
    • pp.163-170
    • /
    • 2019
  • 한국어는 "을/를/이/가/와/과"와 같은 조사가 체언에 붙어 문장의 의미를 더해준다. 문장 중에 외국어 표기를 그대로 사용하는 경우나 외국어의 약자가 포함되어 있는 경우, 외국어의 발음에 따른 적절한 조사가 연결되지 않는 경우가 있다. 때로는 문장의 자연스러운 표현을 위하여 "을(를)"과 같이 괄호 형식으로 표현하여 조사를 두 개 다 수용 가능한 형태로 사용되어지기도 한다. 본 연구에서는 문장 내에 외국어가 포함되어 있는 경우, 조사가 부자연스럽게 연결되는 예를 찾고 체언의 종성 발음을 학습하여 자연스러운 조사 연결을 위한 방법을 알아보고자 한다. 제안하는 방법은 순환신경망 모델을 이용하여 외국어에 연결된 조사를 자연스럽게 표현하는 것이다. 제안된 모델로 학습 및 테스트하여 방법의 필요성을 입증함으로써, 향후 기계 번역에서 영문 약자나 새로운 외국어 삽입 시 자연스러운 조사 연결로 완전한 문장을 연결하는데 사용될 수 있을 것으로 기대한다.

다중선형회귀 및 인공신경망 모형을 이용한 대설피해에 따른 피해액 예측에 관한 연구 (Prediction of damages induced by Snow using Multiple-linear regression and Artificial Neural Network model)

  • 권순호;이의훈;정건희;김중훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.20-20
    • /
    • 2017
  • 최근 기후변화 영향에 따라 전 세계적으로 인명피해 및 재산피해를 유발하는 자연재난이 지속적으로 증가하고 있으며, 그로 인한 자연재해의 규모가 점점 더 커지고 있다. 실제로 우리나라에서도 지난 1994 년에서 2013 년까지 지난 20 년간 자연재해에 의한 피해액은 12조 3천억 원으로 집계되었으며, 이 중 강우와 태풍에 의한 피해가 85 % 이고, 대설에 의한 피해는 약 13 % 로 자연재해 중 대부분의 피해는 강우 및 태풍에서 발생하지만, 폭설에 의한 피해도 적지 않은 것으로 나타났다. 이에 따라, 정확한 예측을 위해 신뢰도 높은 자료 구축을 통한 대설피해 예측에 관한 연구가 필요한 시점이다. 본 연구에서는 대설피해액 예측을 위해 우리나라의 63개 기상 관측소에서 관측한 적설심 자료 및 기상관측 자료와 사회 경제 자료 총 11개를 대설피해 예측을 위한 입력변수로 선정하고, 이를 기상관측소가 속한 도시의 면적에 따라 3개의 지역으로 구분하였다. 주성분분석을 활용하여 선정된 입력변수들을 4개의 주성분으로 구분하고, 인공신경망 및 다중선형 회귀 모형을 구성하여 각 지역별 대설피해 예측의 오차를 분석하였다. 적용결과, 인공신경망 모형을 이용한 대설피해 예측의 수정결정계수는 22.8 %~48.2 %를 나타냈고, 다중선형회귀 모형의 수정결정 계수는 9.2 %~39.7% 로 나타났다. 그러므로 인공신경망 모형이 다중회귀 모형보다 선택된 입력자료를 활용하여 대설피해를 예측하는 목적으로 조금 더 우수한 결과를 나타내었다. 향후 자료를 보완 및 모형의 고도화를 통해 보다 정확한 대설피해 예측 함수 개발이 가능할 것으로 기대된다.

  • PDF

Feasibility Study of Google's Teachable Machine in Diagnosis of Tooth-Marked Tongue

  • Jeong, Hyunja
    • 치위생과학회지
    • /
    • 제20권4호
    • /
    • pp.206-212
    • /
    • 2020
  • Background: A Teachable Machine is a kind of machine learning web-based tool for general persons. In this paper, the feasibility of Google's Teachable Machine (ver. 2.0) was studied in the diagnosis of the tooth-marked tongue. Methods: For machine learning of tooth-marked tongue diagnosis, a total of 1,250 tongue images were used on Kaggle's web site. Ninety percent of the images were used for the training data set, and the remaining 10% were used for the test data set. Using Google's Teachable Machine (ver. 2.0), machine learning was performed using separated images. To optimize the machine learning parameters, I measured the diagnosis accuracies according to the value of epoch, batch size, and learning rate. After hyper-parameter tuning, the ROC (receiver operating characteristic) analysis method determined the sensitivity (true positive rate, TPR) and specificity (false positive rate, FPR) of the machine learning model to diagnose the tooth-marked tongue. Results: To evaluate the usefulness of the Teachable Machine in clinical application, I used 634 tooth-marked tongue images and 491 no-marked tongue images for machine learning. When the epoch, batch size, and learning rate as hyper-parameters were 75, 0.0001, and 128, respectively, the accuracy of the tooth-marked tongue's diagnosis was best. The accuracies for the tooth-marked tongue and the no-marked tongue were 92.1% and 72.6%, respectively. And, the sensitivity (TPR) and specificity (FPR) were 0.92 and 0.28, respectively. Conclusion: These results are more accurate than Li's experimental results calculated with convolution neural network. Google's Teachable Machines show good performance by hyper-parameters tuning in the diagnosis of the tooth-marked tongue. We confirmed that the tool is useful for several clinical applications.

회전한 상표 이미지의 진위 결정을 위한 기계 학습 데이터 확장 방법 (Machine Learning Data Extension Way for Confirming Genuine of Trademark Image which is Rotated)

  • 구본근
    • Journal of Platform Technology
    • /
    • 제8권1호
    • /
    • pp.16-23
    • /
    • 2020
  • 상표권 보호를 위한 상표 이미지의 진위 결정에 심층 신경망인 합성곱 신경망을 이용할 수 있다. 이를 위해, 상표로 등록되어 있는 한 장의 상표 이미지를 반복적으로 학습하는 것은 기계학습의 성능을 감소시키는 원인이 된다. 따라서, 이러한 응용에서 학습 데이터는 다양한 방법으로 생성된다. 하지만 대상 이미지가 회전되어 있으면 원본이라 하더라도 인식하지 못하거나 위조 상표로 분류되기도 한다. 본 논문에서는 회전한 상표 이미지의 진위 결정을 위한 기계학습 데이터의 확장 방법을 제안한다. 본 논문에서 제안하는 학습 데이터 확장 방법은 기울어진 이미지를 생성하고 이를 학습 데이터로 사용하는 것이다. 본 논문에서 제안하는 학습 데이터 확장 방법의 유효성 검증을 위해 대학의 로고를 대상으로 학습 데이터를 생성하였으며, 이를 활용하여 합성곱 신경망을 학습시킨 후 검증용 데이터를 이용하여 정확도를 평가하였다. 정확도 평가 결과에 따르면 본 논문에서 제안한 방법으로 생성한 학습 데이터를 활용하면 회전한 상표를 대상으로 한 진위 여부 결정에 합성곱 신경망을 활용할 수 있다.

  • PDF

공공도서관 도서 분류를 위한 머신러닝 적용 가능성 연구 - 사회과학과 예술분야를 중심으로 - (A Study on Applicability of Machine Learning for Book Classification of Public Libraries: Focusing on Social Science and Arts)

  • 곽철완
    • 한국비블리아학회지
    • /
    • 제32권1호
    • /
    • pp.133-150
    • /
    • 2021
  • 이 연구의 목적은 공공도서관의 도서 분류를 위해 표제를 대상으로 머신러닝 기법의 적용 가능성을 조사하는데 있다. 데이터 분석은 아나콘다 플랫폼의 쥬피터 노트북을 통하여 파이썬의 싸이킷런 라이브러리를 이용하였다. 한글 형태소 분석을 위해 KoNLPy 분석기와 Okt 클래스를 사용하였다. 분석 대상은 공공도서관의 KORMARC 레코드에서 추출된 2,000건의 표제 필드와 KDC 분류기호(300대와 600대)이었다. 6가지 머신러닝 모델을 이용하여 데이터를 분석한 결과, 도서 분류에 머신러닝 적용 가능성이 있다고 판단되었다. 사용된 모델 중 표제 분류의 정확도는 신경망 모델이 가장 높았다. 표제 분류의 정확도 향상을 위해 도서 표제에 대한 조사와 표제의 토큰화 및 불용어에 대한 연구 필요성을 제안하였다.

PLC 디지털 제어 신호를 통한 LSTM기반의 이산 생산 공정의 실시간 고장 상태 감지 (Real-Time Fault Detection in Discrete Manufacturing Systems Via LSTM Model based on PLC Digital Control Signals)

  • 송용욱;백수정
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.115-123
    • /
    • 2021
  • A lot of sensor and control signals is generated by an industrial controller and related internet-of-things in discrete manufacturing system. The acquired signals are such records indicating whether several process operations have been correctly conducted or not in the system, therefore they are usually composed of binary numbers. For example, once a certain sensor turns on, the corresponding value is changed from 0 to 1, and it means the process is finished the previous operation and ready to conduct next operation. If an actuator starts to move, the corresponding value is changed from 0 to 1 and it indicates the corresponding operation is been conducting. Because traditional fault detection approaches are generally conducted with analog sensor signals and the signals show stationary during normal operation states, it is not simple to identify whether the manufacturing process works properly via conventional fault detection methods. However, digital control signals collected from a programmable logic controller continuously vary during normal process operation in order to show inherent sequence information which indicates the conducting operation tasks. Therefore, in this research, it is proposed to a recurrent neural network-based fault detection approach for considering sequential patterns in normal states of the manufacturing process. Using the constructed long short-term memory based fault detection, it is possible to predict the next control signals and detect faulty states by compared the predicted and real control signals in real-time. We validated and verified the proposed fault detection methods using digital control signals which are collected from a laser marking process, and the method provide good detection performance only using binary values.

전력 부하와 학습모델 기반의 전기추진선박의 배터리 연동 전력관리 알고리즘 (Battery-loaded power management algorithm of electric propulsion ship based on power load and state learning model)

  • 오지현;오진석
    • 한국정보통신학회논문지
    • /
    • 제24권9호
    • /
    • pp.1202-1208
    • /
    • 2020
  • 현재 4차 산업혁명 시대에 발맞춰서 선박 분야에서는 인공지능 요소를 접목하여 미래를 대비하여야 한다. 그리고 자율운항 선박 등장에 대한 전력관리 분야에서도 이에 대한 대응이 필요하다. 본 연구에서는 머신러닝의 DNN(Deep Neural Network)을 이용한 배터리 연동형 전력관리시스템(BLPMS, Battery Linked Power Management System) 알고리즘을 제안한다. 실험을 위하여 LabView를 통한 선박 데이터를 바탕으로 운항모드별 선박 전력소비량의 패턴을 학습하고 Python을 통해 배터리의 상태를 도출하여 발전기와 배터리의 연동의 유연성을 확인하였다. 실험의 결과 배터리의 충·방전을 통해 발전기의 저부하 운전이 감소되고, LNG의 1%의 연료소모량 감소를 통하여 경제성 및 신뢰성을 확인하였다.