• Title/Summary/Keyword: Neural network Transformer

Search Result 109, Processing Time 0.027 seconds

Transformer-Based MUM-T Situation Awareness: Agent Status Prediction (트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측)

  • Jaeuk Baek;Sungwoo Jun;Kwang-Yong Kim;Chang-Eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

Estimation of The Partial Discharge Position Using Neural Networks in The Power Transformers (신경망을 이용한 전력용 변압기의 부분방전 위치추정)

  • Kim, Jae-Chul;Yoon, Yong-Han;Kim, Young-Sik;Kweon, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1649-1651
    • /
    • 1994
  • This paper presents a new method for estimating partial discharge position using improved cross-correlation technique and neural networks in the power transformer. When ultrasonic signal is occurred by partial discharge, we detected these signals and calculated cross-correlation values with Hamming window. Also, we estimated partial discharge position using neural network with cross-correlation values. In the result of case study, we can estimate more accurately the partial discharge position than any other algorithms.

  • PDF

Design of Nonlinear FACTS Controller with Neural Networks for Power System Stabilization (계통의 안정성을 고려한 비선형 FACTS 신경망 제어기설계)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.211-218
    • /
    • 2002
  • We propose a intelligent controller for FACTS device to stabilize a power system. In order to identify the nonlinear characteristics of the power system and to estimate a control signal, an artificial neural network is utilized. Parameter and location of Unified Power Flow Controller(UPFC) on power system operating conditions are discussed. A UPFC is composed of an excitation transformer, a boosting, two three-phase GTO based voltage source converters, and a dc link capacitor. The proposed controller is applied to UPFC to verified the effectiveness of the proposed control system. The results show that the proposed nonlinear FACTS controller is able to enhance the transient stability of a three machine and nine bus system.

Performance Analysis of Deep Learning-based Normalization According to Input-output Structure and Neural Network Model (입출력구조와 신경망 모델에 따른 딥러닝 기반 정규화 기법의 성능 분석)

  • Changsoo Ryu;Geunhwan Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.13-24
    • /
    • 2024
  • In this paper, we analyzed the performance of normalization according to various neural network models and input-output structures. For the analysis, a simulation-based dataset for noise environments with homogeneous and up to three interfering signals was used. As a result, the end-to-end structure that directly outputs noise variance showed superior performance when using a 1-D convolutional neural network and BiLSTM model, and was analyzed to be particularly robust against interference signals. This is because the 1-D convolutional neural network and bidirectional long short-term memory models have stronger inductive bias than the multilayer perceptron and transformer models. The analysis of this paper are expected to be used as a useful reference for future research on deep learning-based normalization.

SEL-RefineMask: A Seal Segmentation and Recognition Neural Network with SEL-FPN

  • Dun, Ze-dong;Chen, Jian-yu;Qu, Mei-xia;Jiang, Bin
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.411-427
    • /
    • 2022
  • Digging historical and cultural information from seals in ancient books is of great significance. However, ancient Chinese seal samples are scarce and carving methods are diverse, and traditional digital image processing methods based on greyscale have difficulty achieving superior segmentation and recognition performance. Recently, some deep learning algorithms have been proposed to address this problem; however, current neural networks are difficult to train owing to the lack of datasets. To solve the afore-mentioned problems, we proposed an SEL-RefineMask which combines selector of feature pyramid network (SEL-FPN) with RefineMask to segment and recognize seals. We designed an SEL-FPN to intelligently select a specific layer which represents different scales in the FPN and reduces the number of anchor frames. We performed experiments on some instance segmentation networks as the baseline method, and the top-1 segmentation result of 64.93% is 5.73% higher than that of humans. The top-1 result of the SEL-RefineMask network reached 67.96% which surpassed the baseline results. After segmentation, a vision transformer was used to recognize the segmentation output, and the accuracy reached 91%. Furthermore, a dataset of seals in ancient Chinese books (SACB) for segmentation and small seal font (SSF) for recognition were established which are publicly available on the website.

Facial Manipulation Detection with Transformer-based Discriminative Features Learning Vision (트랜스포머 기반 판별 특징 학습 비전을 통한 얼굴 조작 감지)

  • Van-Nhan Tran;Minsu Kim;Philjoo Choi;Suk-Hwan Lee;Hoanh-Su Le;Ki-Ryong Kwon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.540-542
    • /
    • 2023
  • Due to the serious issues posed by facial manipulation technologies, many researchers are becoming increasingly interested in the identification of face forgeries. The majority of existing face forgery detection methods leverage powerful data adaptation ability of neural network to derive distinguishing traits. These deep learning-based detection methods frequently treat the detection of fake faces as a binary classification problem and employ softmax loss to track CNN network training. However, acquired traits observed by softmax loss are insufficient for discriminating. To get over these limitations, in this study, we introduce a novel discriminative feature learning based on Vision Transformer architecture. Additionally, a separation-center loss is created to simply compress intra-class variation of original faces while enhancing inter-class differences in the embedding space.

Time-Series Forecasting Based on Multi-Layer Attention Architecture

  • Na Wang;Xianglian Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Time-series forecasting is extensively used in the actual world. Recent research has shown that Transformers with a self-attention mechanism at their core exhibit better performance when dealing with such problems. However, most of the existing Transformer models used for time series prediction use the traditional encoder-decoder architecture, which is complex and leads to low model processing efficiency, thus limiting the ability to mine deep time dependencies by increasing model depth. Secondly, the secondary computational complexity of the self-attention mechanism also increases computational overhead and reduces processing efficiency. To address these issues, the paper designs an efficient multi-layer attention-based time-series forecasting model. This model has the following characteristics: (i) It abandons the traditional encoder-decoder based Transformer architecture and constructs a time series prediction model based on multi-layer attention mechanism, improving the model's ability to mine deep time dependencies. (ii) A cross attention module based on cross attention mechanism was designed to enhance information exchange between historical and predictive sequences. (iii) Applying a recently proposed sparse attention mechanism to our model reduces computational overhead and improves processing efficiency. Experiments on multiple datasets have shown that our model can significantly increase the performance of current advanced Transformer methods in time series forecasting, including LogTrans, Reformer, and Informer.

Electroencephalogram-based emotional stress recognition according to audiovisual stimulation using spatial frequency convolutional gated transformer (공간 주파수 합성곱 게이트 트랜스포머를 이용한 시청각 자극에 따른 뇌전도 기반 감정적 스트레스 인식)

  • Kim, Hyoung-Gook;Jeong, Dong-Ki;Kim, Jin Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.518-524
    • /
    • 2022
  • In this paper, we propose a method for combining convolutional neural networks and attention mechanism to improve the recognition performance of emotional stress from Electroencephalogram (EGG) signals. In the proposed method, EEG signals are decomposed into five frequency domains, and spatial information of EEG features is obtained by applying a convolutional neural network layer to each frequency domain. As a next step, salient frequency information is learned in each frequency band using a gate transformer-based attention mechanism, and complementary frequency information is further learned through inter-frequency mapping to reflect it in the final attention representation. Through an EEG stress recognition experiment involving a DEAP dataset and six subjects, we show that the proposed method is effective in improving EEG-based stress recognition performance compared to the existing methods.

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Artificial intelligence application UX/UI study for language learning of children with articulation disorder (조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구)

  • Yang, Eun-mi;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.174-176
    • /
    • 2022
  • In this paper, we present a mobile application for 'personalized customized learning' for children with articulation disorders using an artificial intelligence (AI) algorithm. A dataset (Data Set) to analyze, judge, and predict the learner's articulation situation and degree. In particular, we designed a prototype model by looking at how AI can be improved and advanced compared to existing applications from the UX/UI (GUI) aspect. So far, the focus has been on visual experience, but now it is an important time to process data and provide a UX/UI (GUI) experience to users. The UX/UI (GUI) of the proposed mobile application was to be provided according to the learner's articulation level and situation by using CRNN (Convolution Recurrent Neural Network) of DeepLearning and Auto Encoder GPT-3 (Generative Pretrained Transformer). The use of artificial intelligence algorithms will provide a learning environment with a high degree of perfection to children with articulation disorders, thereby enhancing the learning effect. I hope that you do not have any fear or discomfort in conversation by improving the perfection of articulation with 'personalized and customized learning'.

  • PDF