This paper presents a new color correction method for color reproduction on LCD-based monitor by means of high-order multilayer neural networks. LCD monitors have nonlinear characteristics from various displaying system components. To overcome these nonlinearities and produce quality image, we need a nonlinear transformer for color coordinate transformation between the LCD monitor coordinates and the input color stimulus values. A high-order multilayer neural network is effectively trained to learn a mapping to determine the required color value of monitors for producing a given color stimulus. From the experimental results, the proposed method is effective in reproducing the color images.
Sentinel-2 can be used as proxy data for the Korean Compact Advanced Satellite 500-4 (CAS500-4), also known as Agriculture and Forestry Satellite, in terms of spectral wavelengths and spatial resolution. This letter examined cloud detection for later use in the CAS500-4 based on deep learning technologies. DeepLabV3+, a traditional Convolutional Neural Network (CNN) model, and Shifted Windows (Swin) Transformer, a state-of-the-art (SOTA) Transformer model, were compared using 22,728 images provided by Radiant Earth Foundation (REF). Swin Transformer showed a better performance with a precision of 0.886 and a recall of 0.875, which is a balanced result, unbiased between over- and under-estimation. Deep learning-based cloud detection is expected to be a future operational module for CAS500-4 through optimization for the Korean Peninsula.
Voice conversion can be applied to various voice processing applications. It can also play an important role in data augmentation for speech recognition. The conventional method uses the architecture of voice conversion with speech synthesis, with Mel filter bank as the main parameter. Mel filter bank is well-suited for quick computation of neural networks but cannot be converted into a high-quality waveform without the aid of a vocoder. Further, it is not effective in terms of obtaining data for speech recognition. In this paper, we focus on performing voice-to-voice conversion using only the raw spectrum. We propose a deep learning model based on the transformer network, which quickly learns the voice conversion properties using an attention mechanism between source and target spectral components. The experiments were performed on TIDIGITS data, a series of numbers spoken by an English speaker. The conversion voices were evaluated for naturalness and similarity using mean opinion score (MOS) obtained from 30 participants. Our final results yielded 3.52±0.22 for naturalness and 3.89±0.19 for similarity.
Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
/
2004.11a
/
pp.87-90
/
2004
This paper describes development of power transformer maintenance system using intelligent dissolved gases in oil analysis. The used gases are acetylene(C2H2), hydrogen(H2), ethylene(C2H4), methane(CH4), ethane(C2H6), carbon monoxide(CO) and carbon dioxide(CO2). The rule and neural network based gas analysis methods are used for artificial intelligent diagnosis. It is indicated that this program is efficient for diagnosis of oil immersed transformers diagnosis from application of gas analysis data of serviced transformer which has local overheating
본 논문에서는 어텐션(Attention) 메커니즘을 이미지 처리에 적용한 연구가 진행되면서 등장한 비전 트랜스포머 (Vision Transformer, ViT)의 한계를 극복하기 위해 ViT 기반의 딥 클러스터링(Deep Clustering) 기법을 제안한다. ViT는 완전히 트랜스포머(Transformer)만을 사용하여 입력 이미지의 패치(patch)들을 벡터로 변환하여 학습하는 모델로, 합성곱 신경망(Convolutional Neural Network, CNN)을 사용하지 않으므로 입력 이미지의 크기에 대한 제한이 없으며 높은 성능을 보인다. 그러나 작은 데이터셋에서는 학습이 어렵다는 단점이 있다. 제안하는 딥 클러스터링 기법은 처음에는 입력 이미지를 임베딩 모델에 통과시켜 임베딩 벡터를 추출하여 클러스터링을 수행한 뒤, 클러스터링 결과를 임베딩 벡터에 반영하도록 업데이트하여 클러스터링을 개선하고, 이를 반복하는 방식이다. 이를 통해 ViT 모델의 일반적인 패턴 파악 능력을 개선하고 더욱 정확한 클러스터링 결과를 얻을 수 있다는 것을 실험을 통해 확인하였다.
Journal of the Korea Society of Computer and Information
/
v.28
no.7
/
pp.11-18
/
2023
In this paper, we evaluate deep learning time series forecasting models. Recent studies show that those models perform better than the traditional prediction model such as ARIMA. Among them, recurrent neural networks to store previous information in the hidden layer are one of the prediction models. In order to solve the gradient vanishing problem in the network, LSTM is used with small memory inside the recurrent neural network along with BI-LSTM in which the hidden layer is added in the reverse direction of the data flow. In this paper, we compared the performance of Informer by comparing with other models (LSTM, BI-LSTM, and Transformer) for real Nitrogen dioxide (NO2) data. In order to evaluate the accuracy of each method, mean square root error and mean absolute error between the real value and the predicted value were obtained. Consequently, Informer has improved prediction accuracy compared with other methods.
Park, Jae-Jun;Jeon, Hyun-Gu;Jeon, Byung-Hoon;Kim, Sung-Hong;Kwon, Dong-Jin
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2002.07b
/
pp.894-899
/
2002
In this papers, we proposed the new method in order to diagnosis partial discharge type of transformers. For wavelet transform, Daubechies filter is used, we can obtain wavelet coefficients which is used to extract feature of statistical parameters (maximum value, average value, dispersion, skewness, kurtosis) about high frequency current signal per 3-electrode type (needle-plane electrode, IEC electrode and Void electrode.). Also. these coefficients are used to identify Signal of internal partial discharge in transformer. As a result. from compare of high frequency current signal amplitude and average value. we are obtained results of IEC electrode> Void electrode> Needle-Plane electrode. otherwise. In case of skewness and kurtosis, we are obtained results of Void electrode> IEC electrode > Needle-Plane electrode. As Improved method in order to diagnosis partial discharge type of transformers, we use neural network.
As robots are considered one of the mainstream digital transformations, robots with machine vision becomes a main area of study providing the ability to check what robots watch and make decisions based on it. However, it is difficult to find a small object in the image mainly due to the flaw of the most of visual recognition networks. Because visual recognition networks are mostly convolution neural network which usually consider local features. So, we make a model considering not only local feature, but also global feature. In this paper, we propose a detection method of a small marker on the object using deep learning and an algorithm that considers global features by combining Transformer's self-attention technique with a convolutional neural network. We suggest a self-attention model with new definition of Query, Key and Value for model to learn global feature and simplified equation by getting rid of position vector and classification token which cause the model to be heavy and slow. Finally, we show that our model achieves higher mAP than state of the art model YOLOr.
Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.
Most neural-network-based speech synthesis models utilize neural vocoders to convert mel-scaled spectrograms into high-quality, human-like voices. However, neural vocoders combined with mel-scaled spectrogram prediction models demand considerable computer memory and time during the training phase and are subject to slow inference speeds in an environment where GPU is not used. This problem does not arise in linear spectrogram prediction models, as they do not use neural vocoders, but these models suffer from low voice quality. As a solution, this paper proposes a Tacotron 2 and Transformer-based linear spectrogram prediction model that produces high-quality speech and does not use neural vocoders. Experiments suggest that this model can serve as the foundation of a high-quality text-to-speech model with fast inference speed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.