• 제목/요약/키워드: Neural network Transformer

검색결과 109건 처리시간 0.033초

Transformer Differential Relay by Using Neural-Fuzzy System

  • Kim, Byung Whan;Masatoshi, Nakamura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.157.2-157
    • /
    • 2001
  • This paper describes the synergism of Artificial Neural Network and Fuzzy Logic based approach to improve the reliability of transformer differential protection, the conventional transformer differential protection commonly used a harmonic restraint principle to prevent a tripping from inrush current during initial transformer´s energization but such a principle can not performs the best optimization on tripping time. Furthermore, in some cases there may be false operation such as during CT saturation, high DC offset or harmonic containing in the line. Therefore an artificial neural network and fuzzy logic has been proposed to improve reliability of the transformer protection relay. By using EMTP-ATP the power transformer is modeled, all currents flowing ...

  • PDF

Neural Network Based Dissolved Gas Analysis Using Gas Composition Patterns Against Fault Causes

  • J. H. Sun;Kim, K. H.;P. B. Ha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권4호
    • /
    • pp.130-135
    • /
    • 2003
  • This study describes neural network based dissolved gas analysis using composition patterns of gas concentrations for transformer fault diagnosis. DGA samples were gathered from related literatures and classified into six types of faults and then a neural network was trained using the DGA samples. Diagnosis tests were performed by the trained neural network with DGA samples of serviced transformers, fault causes of which were identified by actual inspection. Diagnosis results by the neural network were in good agreement with actual faults.

Transformer를 활용한 인공신경망의 경량화 알고리즘 및 하드웨어 가속 기술 동향 (Trends in Lightweight Neural Network Algorithms and Hardware Acceleration Technologies for Transformer-based Deep Neural Networks)

  • 김혜지;여준기
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.12-22
    • /
    • 2023
  • The development of neural networks is evolving towards the adoption of transformer structures with attention modules. Hence, active research focused on extending the concept of lightweight neural network algorithms and hardware acceleration is being conducted for the transition from conventional convolutional neural networks to transformer-based networks. We present a survey of state-of-the-art research on lightweight neural network algorithms and hardware architectures to reduce memory usage and accelerate both inference and training. To describe the corresponding trends, we review recent studies on token pruning, quantization, and architecture tuning for the vision transformer. In addition, we present a hardware architecture that incorporates lightweight algorithms into artificial intelligence processors to accelerate processing.

변압기의 내부 구조 격자화와 신경망을 이용한 부분방전 위치추정 연구 (A Study on The Estimation of Partial Discharge Location Using Division of Internal Structure of Transformer and Neural Network)

  • 이양진;김재철;김용성;조성민
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.370-375
    • /
    • 2006
  • This paper suggests the method for estimating a partial discharge (PD) location using divide of the inside transformer as a grid. The PD location is found swiftly and economically compared with the typical method detecting a PD. The reason is that the location of PD is detected in the section. The estimation of PD location is trained using the Neural Network. JavaNNS(Java Neural Network Simulator) and SNNS(Stuttgart Neural Network Simulator) are used for searching the location of PD. The simulation procedure is following, The transformer is assumed that the case is a regular hexahedron. The sensor is installed in a proper location. A section of PD location is set as a target, and training set is studied with several PD locations in the inside of the transformer. As a result of training process, the learning capability of neural network is excellent. The PD location is detected by division of internal structure of transformer and application of neural network.

  • PDF

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • 제4권2호
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.

신경회로망을 이용한 변압기 사고 검출 기법 개발 (Development of Fault Detection Method for a Transformer Using Neural Network)

  • 김일남;김남호
    • 조명전기설비학회논문지
    • /
    • 제17권5호
    • /
    • pp.43-50
    • /
    • 2003
  • 본 논문은 신경회로망을 이용하여 변압기 사고검출 기법을 제안하였다. 계전기 정동작을 위하여 전력용 변압기의 외부사고와 돌입현상은 포화현상이 고려된 EMTP/ATP를 이용하였고, 내부사고는 EMTP/BCTRAN를 이용하여 얻은 전류 데이타를 신경회로망의 사고검출 성능으로 평가하였다. 신경회로망의 입력지수로는 변압기 양단전류를 FFT로 주파수 분석하여 얻은 억제전류와 동작전류의 고조파 비의 크기를 이용하였고, 외부사고 시 억제전류값이 크게 나타나는 것을 이용하기 위해 억제전류를 동작전류로 나눈값을 계전기 입력으로 사용하였고, 학습알고리즘은back-propagation을 사용하였다. 실 계통에 적용하고 있는 변압기 보호용 계전기의 특성을 신경회로망의 검출성능으로 테스트한 결과 제안된 기법이 뛰어남이 확인되었다.

코호넨 신경회로망을 이용한 ULTC 변압기와 STACOM의 협조제어 (Coordination Control of ULTC Transformer and STACOM using Kohonen Neural Network)

  • 김광원;이흥재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1103-1111
    • /
    • 1999
  • STACOM will be utilized to control substation voltage in the near future. Although STACOM shows good voltage regulation performance owing to its rapid and continuous response, it needs additional reactive power compensation device to keep control margin for emergency such as fault. ULTC transformer is one of good candidates. This paper presents a Kohonen Neural Network (KNN) based coordination control scheme of ULTC transformer and STACOM. In this paper, the objective function of the coordination control is minimization of both STACOM output and the number of switchings of ULTC transformer while maintaining substation voltage magnitude to the predefined constant value. This coordination, control is performed based on reactive load trend of the substation and KNN which offers optimal tap position in view of STACOM output minimization. The input variables of KNN are active and reactive power of the substation, current tap position, and current STACOM output. The KNN is trained by effective Iterative Condensed Nearest Neighbor (ICNN) rule. This coordination control applied to IEEE 14 bus system and shows satisfactory results.

  • PDF

Internal Fault Classification in Transformer Windings using Combination of Discrete Wavelet-Transforms and Back-propagation Neural Networks

  • Ngaopitakkul Atthapol;Kunakorn Anantawat
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.365-371
    • /
    • 2006
  • This paper presents an algorithm based on a combination of Discrete Wavelet Transforms and neural networks for detection and classification of internal faults in a two-winding three-phase transformer. Fault conditions of the transformer are simulated using ATP/EMTP in order to obtain current signals. The training process for the neural network and fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. Various cases and fault types based on Thailand electricity transmission and distribution systems are studied to verify the validity of the algorithm. It is found that the proposed method gives a satisfactory accuracy, and will be particularly useful in a development of a modern differential relay for a transformer protection scheme.

Dissolved Gas Analysis of Power Transformer Using Fuzzy Clustering and Radial Basis Function Neural Network

  • Lee, J.P.;Lee, D.J.;Kim, S.S.;Ji, P.S.;Lim, J.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.157-164
    • /
    • 2007
  • Diagnosis techniques based on the dissolved gas analysis(DGA) have been developed to detect incipient faults in power transformers. Various methods exist based on DGA such as IEC, Roger, Dornenburg, and etc. However, these methods have been applied to different problems with different standards. Furthermore, it is difficult to achieve an accurate diagnosis by DGA without experienced experts. In order to resolve these drawbacks, this paper proposes a novel diagnosis method using fuzzy clustering and a radial basis neural network(RBFNN). In the neural network, fuzzy clustering is effective for selecting the efficient training data and reducing learning process time. After fuzzy clustering, the RBF neural network is developed to analyze and diagnose the state of the transformer. The proposed method measures the possibility and degree of aging as well as the faults occurred in the transformer. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

Network Intrusion Detection Using Transformer and BiGRU-DNN in Edge Computing

  • Huijuan Sun
    • Journal of Information Processing Systems
    • /
    • 제20권4호
    • /
    • pp.458-476
    • /
    • 2024
  • To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.