• 제목/요약/키워드: Neural learning scheme

검색결과 260건 처리시간 0.029초

사전훈련된 모델구조를 이용한 심층신경망 기반 유방암 조직병리학적 이미지 분류 (Breast Cancer Histopathological Image Classification Based on Deep Neural Network with Pre-Trained Model Architecture)

  • 비키 무뎅;이언진;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.399-401
    • /
    • 2022
  • 유방 악성 상태를 분류하기 위한 최종 진단은 침습적 생검을 이용한 현미경 분석을 통해 확인이 가능하나, 분석을 위해 일정 시간과 비용이 부과되며, 병리학적 지식을 보유한 전문가가 필요하다. 이러한 문제를 극복하기 위해, 딥 러닝을 활용한 진단 기법은 조직병리학적 이미지에서 유방암을 양성 및 악성으로 분류에 효율적인 방법으로 고려된다. 본 연구는 유방암 조직병리학적 이미지를 40배 확대한 BreaKHIS 데이터 세트를 사용하여 양성 및 악성으로 분류하였으며, 100% 미세 조정 체계와 Adagrad를 이용한 최적화로 사전 훈련된 컨볼루션 신경망 모델 아키텍처를 사용하였다. 사전 훈련된 아키텍처는 InceptionResNetV2 모델을 사용하여 마지막 계층을 고밀도 계층과 드롭아웃 계층으로 대체하여 수정된 InceptionResNetV2를 생성하도록 구성되었다. 훈련 손실 0.25%, 훈련 정확도 99.96%, 검증 손실 3.10%, 검증 정확도 99.41%, 테스트 손실 8.46%와 테스트 정확도 98.75%를 입증한 결과는 수정된 InceptionResNetV2 모델이 조직병리학적 이미지에서 유방 악성 유형을 예측하는 데 신뢰할 수 있음을 보여주었다. 향후 연구는 k-폴드 교차 검증, 최적화, 모델, 초 매개 변수 최적화 및 100×, 200× 및 400× 배율에 대한 분류에 초점을 맞추어 추가실험이 필요하다.

  • PDF

딥 러닝 및 서포트 벡터 머신기반 센서 고장 검출 기법 (Sensor Fault Detection Scheme based on Deep Learning and Support Vector Machine)

  • 양재완;이영두;구인수
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.185-195
    • /
    • 2018
  • 최근 산업현장에서 기계의 자동화가 크게 가속화됨에 따라 자동화 기계의 관리 및 유지보수에 대한 중요성이 갈수록 커지고 있다. 자동화 기계에 부착된 센서의 고장이 발생할 경우 기계가 오동작함으로써 공정라인 운용에 막대한 피해가 발생할 수 있다. 이를 막기 위해 센서의 상태를 모니터링하고 고장의 진단 및 분류를 하는 것이 필요하다. 본 논문에서는 센서에서 발생하는 대표적인 고장 유형인 erratic fault, drift fault, hard-over fault, spike fault, stuck fault를 기계학습 알고리즘인 SVM과 CNN을 적용하여 검출하고 분류하였다. SVM의 학습 및 테스트를 위해 데이터 샘플들로부터 시간영역 통계 특징들을 추출하고 최적의 특징을 찾기 위해 유전 알고리즘(genetic algorithm)을 적용하였다. Multi-class를 분류하기 위해 multi-layer SVM을 구성하여 센서 고장을 분류하였다. CNN에 대해서는 데이터 샘플들을 사용하여 학습시키고 성능을 높이기 위해 앙상블 기법을 적용하였다. 시뮬레이션 결과를 통해 유전 알고리즘에 의해 선별된 특징들을 사용한 SVM의 분류 결과는 모든 특징이 사용된 SVM 분류기 보다는 성능이 향상되었으나 전반적으로 CNN의 성능이 SVM보다 우수한 것을 확인할 수 있었다.

ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기 (HIPI Controller of IPMSM Drive using ALM-FNN)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.57-66
    • /
    • 2009
  • 종래의 고정된 이득을 가진 PI 제어기는 지령속도, 부하변화 등과 같은 파라미터 변동에 대해서 매우 민감하다. IPMSM 드라이브의 정확한 속도제어는 비선형적인 전자기적 발생저항뿐만 아니라 회전자 속도와 권선저항사이의 비선형적 관계 때문에 복잡한 문제점이 있다. 따라서 광범위한 동작상태에서 최적 제어를 위해 PI 제어기의 이득값을 실시간으로 조절해야한다. 본 논문은 FNN과 ALM을 이용하여 IPMSM 드라이브의 HIPI 제어기를 제시한다. 제시된 제어기는 ANN을 이용하여 속도를 추정하고, 시스템 외란에 대해서 IPMSM 드라이브의 고성능 속도제어를 제시한다. PI 제어기의 이득값은 모든 동작상태에서 ALM-FNN에 의해 최적화 되어진다. 제시된 제어기는 다양한 동작상태에 대한 분석을 통해 타당성을 입증한다.

신경망과 퍼지 패턴 추정기를 이용한 ATM의 호 수락 제어 (Call Admission Control in ATM by Neural Networks and Fuzzy Pattern Estimator)

  • 이진이
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2188-2195
    • /
    • 1999
  • 본 논문에서는 퍼지 패턴 추정기를 구성하여 신경망 학습시에 훈련되지 않은 새로운 종류의 호가 발생할 때, 재학습을 하지 않고 그 호의 수락/거절을 효과적으로 행할 수 있는 IFVQ-NNCA(Inverse Fuzzy Vectorquantizer-Neural Networks Call Admission Control)를 제안한다. 이 방식은 연결을 요구하는 호의 입력 트래픽 패턴이 발생하면, 그 입력패턴은 수락/거절 표준패턴(코드북), 퍼지 소속 함수값, 그리고 FCM(Fuzzy-C-Means) 연산을 이용하여 학습화한 패턴을 발생한 후, 그 패턴을 신경망의 입력으로 하여 호 수락/거절을 결정한다. 이 방식은 셀 스트림의 평균과 분산값을 트래픽 파라메터로 사용함으로써 트래픽 모델과는 무관한 호 수락제어가 가능하며, 입력패턴(프레임별 관측패턴)과 표준패턴의 멤버쉽 함수값을 CAC에 신고하는 트래픽 파라케터로 사용하는 새로운 방법이다. 신경망은 오류 역전파 알고리즘을 사용하여 표준패턴으로 학습한다. 시뮬레이션을 통하여 기존의 신경망 방식과 제안된 방식의 Fuzziness 값의 설정에 따른 호 수락/거절 오류를 비교하여 제안된 방식이 우수함을 보였다.

  • PDF

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.285-288
    • /
    • 2005
  • 신경회로망은 지능제어알고리즘 중의 하나로 학습능력을 가지고 있다. 이러한 학습능력 때문에 많은 분야에서 널리 사용되고 있으나, 지능제어의 단점인 안정도 문제를 수학적으로 증명하기 어렵다는 문제점을 갖고 있다. 본 논문에서는 신경회로망의 한 종류인 RBFN과 적응제어기법을 이용하여 로봇 매니퓰레이터 궤적 제어기를 구성하고 자 한다. 본 논문에서는 RBFN의 파라메터들을 적응제어기법을 이용하여 수학적으로 구하였고, 시스템의 안정도를 수학적으로 UUB를 만족한다는 것을 증명하였다. 그리고 수평다관절로봇 매니퓰레이터 궤적제어기에 적용하였다.

  • PDF

Zerinke 모멘트와 신경망을 이용한 온라인 필기체 숫자 인식 (Recognition of Online Handwritten Digit using Zernike Moment and Neural Network)

  • 문원호;최연석;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.205-208
    • /
    • 2010
  • 본 논문에서는 Zernike 모멘트와 backpropagation신경망을 이용한 온라인 필기체 숫자 인식 방법을 소개한다. 마우스로 통해 입력된 숫자 정보는 전처리를 통해 시간에 순서적이고, 연속적인 좌표 정보로 변환된다. 전처리된 입력 좌표는 Zernike 모멘트(moment)와 각도 특징(angulation feature)을 이용하여 각 숫자가 가지는 고유의 특징을 만들어 낸다. 이러한 특징은 크기, 모양, 틀어진 정도에 상관없이 항상 일정한 성질을 가진다. 제안된 방법으로 추출된 특징은 패턴 구분을 위해 back propagation 신경망의 입력으로 사용된다. 본 논문은 200개의 필기체 숫자 데이터베이스를 이용하여 실험을 한 결과, 제시된 방법은 적은 학습데이터만으로 학습이 가능할 뿐만 아니라 좋은 인식률을 보여준다.

  • PDF

433 MHz 대역 송신기의 인증을 위한 RF 지문 기법 (RF Fingerprinting Scheme for Authenticating 433MHz Band Transmitters)

  • 김영민;이웅섭;김성환
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2023
  • 사물인터넷에 사용되는 소형 통신 기기들은 적은 메모리 용량과 느린 연산 속도 때문에 고급 암호기법을 적용하지 못하기 때문에 각종 해킹에 취약하다. 본 논문은 433MHz 대역에서 동작하는 소형 송신기들의 인증 신뢰도를 높이기 위해 RF지문을 도입하고 분류 알고리즘으로 CNN (convolutional neural network) 을 사용한다. 각 송신기가 전송하는 프리엠블 신호를 소프트웨어정의라디오를 사용하여 추출하고 수집하여 학습 데이터 집합으로 만들고, 이를 신경망을 학습시키는 데에 사용한다. 네 가지의 시나리오에서 20개의 송신기의 식별을 테스트한 결과 높은 식별 정확도를 얻을 수 있었다. 특히 학습 데이터 수집 시의 위치와 다른 위치에서 테스트를 수행한 시나리오에서, 그리고 송신기가 걷는 속도로 이동하는 시나리오에서 각각 95.8%, 92.6%의 정확도를 산출함을 알 수 있었다.

딥러닝 기반 Local Climate Zone 분류체계를 이용한 지표면온도와 도시열섬 분석: 수원시와 대구광역시를 대상으로 (Analysis of Surface Urban Heat Island and Land Surface Temperature Using Deep Learning Based Local Climate Zone Classification: A Case Study of Suwon and Daegu, Korea)

  • 이연수;이시우;임정호;유철희
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1447-1460
    • /
    • 2021
  • 도시화에 따른 인공피복의 증가는 도시지역의 온도가 주변 교외지역보다 높아지는 UHI (Urban Heat Island; UHI) 현상을 야기한다. 국지기후대(Local Climate Zone; LCZ)는 빌딩의 기하학적 구조와 피복특성에 따라 도시를 분류하는 체계로, UHI 분석을 위해 제안되어 현재 다양한 도시기후 연구에 활용되고 있다. 본 연구는 합성곱신경망(Convolutional Neural Network)과 Landsat 8 위성영상을 이용하여 수원시와 대구광역시의 LCZ 분류모델을 구축하였고, LCZ 지도와 Landsat 8 지표면온도(Land Surface Temperature; LST)를 이용하여 도시 구조적 특성에 따른 LST와 Surface UHI (SUHI) 강도를 분석하였다. LCZ 분류모델은 수원시와 대구광역시에 대해 각각 87.9%와 81.7%의 높은 분류 정확도를 보였다. 대구가 수원보다 전반적으로 모든 LCZ 클래스에서 LST가 높게 나타났으며 건물이 밀집할수록, 건물의 높이가 낮을수록 LST가 증가하는 공통점을 보였다. SUHI 강도는 두 도시 모두 여름철에 가장 강한 값을 가지고 봄과 가을에도 일부 LCZ 클래스를 제외하고 양의 SUHI 강도가 나타났지만 겨울에는 다수의 LCZ 클래스에서 음의 값이 나타났다. 이는 UHI가 여름철에 가장 강하게 나타나며, 겨울에는 일부 도시지역이 교외지역보다 더 차가운 현상이 나타나기도 함을 의미한다. 본 연구는 우리나라 UHI 분석에 있어 LCZ 분류체계의 활용가능성을 확인하였고, 향후 도시기후 분석 및 기후변화 대응 전략수립에 있어 도시의 구조적 특성을 고려하는데 기초자료로 활용될 것으로 기대된다.

DESIGN OF A BINARY DECISION TREE FOR RECOGNITION OF THE DEFECT PATTERNS OF COLD MILL STRIP USING GENETIC ALGORITHM

  • Lee, Byung-Jin;Kyoung Lyou;Park, Gwi-Tae;Kim, Kyoung-Min
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.208-212
    • /
    • 1998
  • This paper suggests the method to recognize the various defect patterns of cold mill strip using binary decision tree constructed by genetic algorithm automatically. In case of classifying the complex the complex patterns with high similarity like the defect patterns of cold mill strip, the selection of the optimal feature set and the structure of recognizer is important for high recognition rate. In this paper genetic algorithm is used to select a subset of the suitable features at each node in binary decision tree. The feature subset of maximum fitness is chosen and the patterns are classified into two classes by linear decision function. After this process is repeated at each node until all the patterns are classified respectively into individual classes. In this way , binary decision tree classifier is constructed automatically. After construction binary decision tree, the final recognizer is accomplished by the learning process of neural network using a set of standard p tterns at each node. In this paper, binary decision tree classifier is applied to recognition of the defect patterns of cold mill strip and the experimental results are given to show the usefulness of the proposed scheme.

  • PDF

냉연 표면 흠 분류를 위한 특징선정 및 이진 트리 분류기의 설계에 관한 연구 (A Study on The Feature Selection and Design of a Binary Decision Tree for Recognition of The Defect Patterns of Cold Mill Strip)

  • 이병진;류경;박귀태;김경민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2330-2332
    • /
    • 1998
  • This paper suggests a method to recognize the various defect patterns of cold mill strip using binary decision tree automatically constructed by genetic algorithm. The genetic algorithm and K-means algorithm were used to select a subset of the suitable features at each node in binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes by a linear decision boundary. This process was repeated at each node until all the patterns are classified into individual classes. The final recognizer is accomplished by neural network learning of a set of standard patterns at each node. Binary decision tree classifier was applied to the recognition of the defect patterns of cold mill strip and the experimental results were given to demonstrate the usefulness of the proposed scheme.

  • PDF