• Title/Summary/Keyword: Neural identifier

Search Result 50, Processing Time 0.028 seconds

A Study on the Design of Optimal Variable Structure Controller using Multilayer Neural Inverse Identifier (신경 회로망을 이용한 최적 가변구조 제어기의 설계에 관한 연구)

  • 이민호;최병재;이수영;박철훈;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1670-1679
    • /
    • 1995
  • In this paper, an optimal variable structure controller with a multilayer neural inverse identifier is proposed. A multilayer neural network with error back propagation learning algorithm is used for construction the neural inverse identifier which is an observer of the external disturbances and the parameter variations of the system. The variable structure controller with the multilayer neural inverse identifier not only needs a small part of a priori knowledge of the bounds of external disturbances and parameter variations but also alleviates the chattering magnitude of the control input. Also, an optimal sliding line is designed by the optimal linear regulator technique and an integrator is introduced for solving the reaching phase problem. Computer simulation results show that the proposed approach gives the effective control results by reducing the chattering magnitude of control input.

  • PDF

A study on the model reference adaptive control using neural network (신경회로망을 이용한 기준모델 제어기에 관한 연구)

  • 조규상;김규남;양태진;유시영;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.243-247
    • /
    • 1992
  • This paper describes a neural network based control scheme with MRAC. The system consists of two neural network; one is for identifier and the other is for controller. Identification is firstly performed to learn the behavior of the nonlinear plant. Neural net controller is next trained by backpropagating the error at the output of plant through the identifier. Also the training method used in this paper repeatedly updates weights of neural network to track the reference model.

  • PDF

Resolved Motion Control of the Robot Manipulator using Neural Network (신경회로망을 이용한 로보트 매니츌레이터의 Resolved Motion제어기의 설계)

  • 송문철;조현찬;이홍기;전홍태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.5
    • /
    • pp.519-526
    • /
    • 1990
  • In this paper we propose the resolved motion controller using a neural network for a robot manipulator. Neural identifier designed by a neural network is trained by using a feedback force as an error signal. The identifier approximates the output of a unknown nonlinear system by monitoring both the input and the output of this system. If the neural network is sufficiently trained well, it does not require either strict modelling of the manipulator or precise parameter estimation. The effectiveness of the proposed controller is demonstrated by computer simulation using a two-link planar robot.

  • PDF

Time-optimal Control Utilizing Beural Networks (신경회로망을 이용한 시간최적 제어)

  • Park, W.W.;J.S. Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.90-98
    • /
    • 1997
  • A time-optimal control law for quick, strongly nonlinear systems has been developed and demonstrated. This procedure involves the utilzation of neural networks as state feedback controllers that learn the time-optimal control actions by means of an iterative minimization of both the final time and the final state error for the systems with constrained inputs and/or states. A neural identifier or a genetic algorithm identifier could be utilized for modeling the partially known systems and the unknown systems. The nature of neural networks as a parallel processor would circumvent the problem of "curwe of dimensionality". The control law has been demonstrated for both a torque input motor and a velocity input motor identified by a genetic algorithm called GENOCOPed GENOCOP.

  • PDF

A Study on the Feedforward Neural Network Based Decentralized Controller for the Power System Stabilization (전력계토 안정화 제어를 위한 신경회로만 분산체어기의 구성에 관한 연구)

  • 최면송;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.543-552
    • /
    • 1994
  • This paper presents a decentralized quadratic regulation architecture with feedforward neural networks for the control problem of complex systems. In this method, the decentralized technique was used to treat several simple subsystems instead of a full complex system in order to reduce training time of neural networks, and the neural networks' nonlinear mapping ability is exploited to handle the nonlinear interaction variables between subsystems. The decentralized regulating architecture is composed of local neuro-controllers, local neuro-identifiers and an overall interaction neuro-identifier. With the interaction neuro-identifier that catches interaction characteristics, a local neuro-identifier is trained to simulate a subsystem dynamics. A local neuro-controller is trained to learn how to control the subsystem by using generalized Backprogation Through Time(BTT) algorithm. The proposed neural network based decentralized regulating scheme is applied in the power System Stabilization(PSS) control problem for an imterconnected power system, and compared with that by a conventional centralized LQ regulator for the power system.

A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique (신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구)

  • Lee Young Jin;Suh Jin Ho;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.

Design of a Controller for the Heat Capacity of Thermal Storage Systems Using Off-Peak Electricity (축열식 심야전력기기를 위한 축열량 제어기 설계)

  • Lee, Eun-Uk;Yang, Hae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1211-1217
    • /
    • 2001
  • This paper presnts a controller for the heat capacity of thermal storage systems using off-peak electricity which is composed of an identifier using neural networks and a storage time adjuster in order to store exactly the required thermal energy without loss. Since thermal storage systems have nonlinear characteristics and large time constant, even if we predict the heating load accurately, it is very difficult to store exactly the required thermal energy. Thus, in the neural network for the identifier, the adaptive learning rate for high learning speed and bit inputs based on state changes of thermal storage power source are used. Also a hardware for the controller using a microprocessor is developed. The performance of the proposed controller is shown by experiment.

  • PDF

A Study on Driving Control using Neural Network Identifier (신경회로망 동정기를 이용한 AGV의 주행제어에 관한 연구)

  • 이영진;이진우;손주한;최성욱;김한근;조현철;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.151-151
    • /
    • 2000
  • The objective of this paper is to develop the new robust and adaptive control system against external environments as applying the probabilistic recognition which is one of the inherent properties of immune system, ability of learning and memorization, and regulation theory of immune network to the system under engineering point of view. In this paper, HIA(Humoral Immune Algorithm) PID controller using Neural Network Identifier was proposed to drive the autonomous guided vehicle(AGV) more effectively. To verify the performance of the proposed HIA PID controller, some experiments for the control of steering and speed of that AGV are performed.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller (생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, K.S.;Suh, J.H.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

Container Identifier Recognition System for GATE automation (GATE 자동화를 위한 컨테이너 식별자 인식 시스템)

  • 유영달;하성욱;강대성
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.137-141
    • /
    • 1998
  • Todays the efficient management of container has not been realized in container terminal, because of the excessive quantity of container transported and manual system. For the efficient and automated management of container in terminal, the automated container identifier recognition system in terminal is a significant problem. However, the identifier recognition rate is decreased owing to the difficulty of image preprocessing caused the refraction of container surface, the change of weather and the damaged identifier characters. Therefore, this paper proposes more accurate system for container identifier recognition as suggestion of Line-Scan Proper Region Detect for stronger preprocessing against external noisy element and Moment Back-Propagation Neural Network to recognize identifier.

  • PDF