• 제목/요약/키워드: Neural data

검색결과 5,198건 처리시간 0.041초

신경망모형을 이용한 시간적 분해모형의 개발 3. 혼합자료의 적용 (Development of Temporal Disaggregation Model using Neural Networks 3. Application of the Mixed Data)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1215-1218
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the mixed data The mixed data involves the historic data and the generated data using PARMA (1,1). And, the testing data consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

신경망모형을 이용한 시간적 분해모형의 개발 2. 모의자료의 적용 (Development of Temporal Disaggregation Model using Neural Networks 2. Application of the Generated Data)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1211-1214
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the generated data using PARMA (1,1). And, the testing data consist of the historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • 오경주
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

신경망모형을 이용한 시간적 분해모형의 개발 1. 실측자료의 적용 (Development of Temporal Disaggregation Model using Neural Networks 1. Application of the Historic Data)

  • 김성원;김정헌;박기범
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1207-1210
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Interworking technology of neural network and data among deep learning frameworks

  • Park, Jaebok;Yoo, Seungmok;Yoon, Seokjin;Lee, Kyunghee;Cho, Changsik
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.760-770
    • /
    • 2019
  • Based on the growing demand for neural network technologies, various neural network inference engines are being developed. However, each inference engine has its own neural network storage format. There is a growing demand for standardization to solve this problem. This study presents interworking techniques for ensuring the compatibility of neural networks and data among the various deep learning frameworks. The proposed technique standardizes the graphic expression grammar and learning data storage format using the Neural Network Exchange Format (NNEF) of Khronos. The proposed converter includes a lexical, syntax, and parser. This NNEF parser converts neural network information into a parsing tree and quantizes data. To validate the proposed system, we verified that MNIST is immediately executed by importing AlexNet's neural network and learned data. Therefore, this study contributes an efficient design technique for a converter that can execute a neural network and learned data in various frameworks regardless of the storage format of each framework.

유한요소해석과 순환신경망을 활용한 하중 예측 (Load Prediction using Finite Element Analysis and Recurrent Neural Network)

  • 강정호
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.151-160
    • /
    • 2024
  • Artificial Neural Networks that enabled Artificial Intelligence are being used in many fields. However, the application to mechanical structures has several problems and research is incomplete. One of the problems is that it is difficult to secure a large amount of data necessary for learning Artificial Neural Networks. In particular, it is important to detect and recognize external forces and forces for safety working and accident prevention of mechanical structures. This study examined the possibility by applying the Current Neural Network of Artificial Neural Networks to detect and recognize the load on the machine. Tens of thousands of data are required for general learning of Recurrent Neural Networks, and to secure large amounts of data, this paper derives load data from ANSYS structural analysis results and applies a stacked auto-encoder technique to secure the amount of data that can be learned. The usefulness of Stacked Auto-Encoder data was examined by comparing Stacked Auto-Encoder data and ANSYS data. In addition, in order to improve the accuracy of detection and recognition of load data with a Recurrent Neural Network, the optimal conditions are proposed by investigating the effects of related functions.

Development of Personal-Credit Evaluation System Using Real-Time Neural Learning Mechanism

  • Park, Jong U.;Park, Hong Y.;Yoon Chung
    • 정보기술과데이타베이스저널
    • /
    • 제2권2호
    • /
    • pp.71-85
    • /
    • 1995
  • Many research results conducted by neural network researchers have claimed that the classification accuracy of neural networks is superior to, or at least equal to that of conventional methods. However, in series of neural network classifications, it was found that the classification accuracy strongly depends on the characteristics of training data set. Even though there are many research reports that the classification accuracy of neural networks can be different, depending on the composition and architecture of the networks, training algorithm, and test data set, very few research addressed the problem of classification accuracy when the basic assumption of data monotonicity is violated, In this research, development project of automated credit evaluation system is described. The finding was that arrangement of training data is critical to successful implementation of neural training to maintain monotonicity of the data set, for enhancing classification accuracy of neural networks.

  • PDF

Estimation of Collapse Moment for Wall Thinned Elbows Using Fuzzy Neural Networks

  • Na, Man-Gyun;Kim, Jin-Weon;Shin, Sun-Ho;Kim, Koung-Suk;Kang, Ki-Soo
    • 비파괴검사학회지
    • /
    • 제24권4호
    • /
    • pp.362-370
    • /
    • 2004
  • In this work, the collapse moment due to wall-thinning defects is estimated by using fuzzy neural networks. The developed fuzzy neural networks have been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy neural network to reduce the sensitivity to the input change and the fuzzy neural networks are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, two fuzzy neural networks are trained for two data sets divided into the two classes of extrados and intrados defects, which is because they have different characteristics. The relative 2-sigma errors of the estimated collapse moment are 3.07% for the training data and 4.12% for the test data. It is known from this result that the fuzzy neural networks are sufficiently accurate to be used in the wall-thinning monitoring of elbows.

Data Distributions on Performance of Neural Networks for Two Year Peak Stream Discharges

  • Muttiah, Ranjan S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.1073-1080
    • /
    • 1996
  • The impact of the input and output probability distributions on the performance of neural networks to forecast two year peak stream flow (cubic meters per second) is examined for two major river basins of the US. The neural network input consisted of drainage area(square kilometers ) and elevation (meters). When data are normally distributed , the neural networks predict much better than when the data are non-normal and have larger tails in their distributions.

  • PDF

Predictive Modeling of Competitive Biosorption Equilibrium Data

  • Chu K.H.;Kim E.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권1호
    • /
    • pp.67-71
    • /
    • 2006
  • This paper compares regression and neural network modeling approaches to predict competitive biosorption equilibrium data. The regression approach is based on the fitting of modified Langmuir-type isotherm models to experimental data. Neural networks, on the other hand, are non-parametric statistical estimators capable of identifying patterns in data and correlations between input and output. Our results show that the neural network approach outperforms traditional regression-based modeling in correlating and predicting the simultaneous uptake of copper and cadmium by a microbial biosorbent. The neural network is capable of accurately predicting unseen data when provided with limited amounts of data for training. Because neural networks are purely data-driven models, they are more suitable for obtaining accurate predictions than for probing the physical nature of the biosorption process.