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Estimation of Collapse Moment for Wall Thinned Elbows
Using Fuzzy Neural Networks

Man Gyun Na*’T, Jin Weon Kim*, Sun Ho Shin*, Koung Suk Kim**, and Ki Soo Kang**

Abstract In this work, the collapse moment due to wall-thinning defects is estimated by using fuzzy neural
networks. The developed fuzzy neural networks have been applied to the numerical data obtained from the finite
element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy neural
network to reduce the sensitivity to the input chaﬁge and the fuzzy neural networks are trained by using the data
set prepared for training (training data) and verified by using another data set different (independent) from the
training data. Also, two fuzzy neural networks are trained for two data sets divided into the two classes of
extrados and intrados defects, which is because they have different characteristics. The relative 2-sigma errors of
the estimated collapse moment are 3.07% for the training data and 4.12% for the test data. It is known from this
result that the fuzzy neural networks are sufficiently accurate to be used in the wall-thinning monitoring of

elbows.
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1. Introduction

The pipe bends and elbows are regarded as
critical components in piping systems because they
are incorporated into piping systems to allow
modification of the isometric routing and more
importantly pipe bends are usually incorporated to
reduce anchor reaction forces. Also, the pipe bends
and elbows are capable of absorbing considerably
large thermal expansion and seismic movement
through the energy dissipation as a result of local
plastic deformation so that they maintain the
integrity of piping system under transiently loading
conditions{1]. However, care must be taken to
ensure that the collapse load is avoided. Therefore,
it is important to accurately estimate the safety

margin for a collapse of elbows under various

operating conditions.

However, the pipe elbows in nuclear power
various degradation
the wall

considered as an important degradation mechanism

plants are subjected to

mechanisms. Especially, thinning  is
in carbon steel elbows[2]. The wall-thinning defect
is mainly caused by flow-accelerated corrosion,
and it results in reducing failure pressure,
load-carrying capacity, deformation ability, and
fatigue resistance of pipe elbows. Therefore, it is
necessary to investigate the effect of thinning
defect on the failure behavior of pipe elbows and
to accurately estimate the collapse loads of wall
thinned elbows under various loading conditions.
The objective of this work is to predict the
collapse moment under a varicty of loading

conditions by fuzzy neural networks by measuring
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the defect geometry using laser technique. Many
artificial intelligence techniques including neural
networks and fuzzy inference methods have been
successfully applied to a lot of nuclear engineering
problems such as signal validation [3-5], plant
[6-7], loading [8-9],
control [10], event identification [11-12], and so

diagnostics optimal fuel
forth, Also, the neural networks have largely and
successfully been applied to function
approximation problems that will be used in this
work. Therefore, the fuzzy neural networks which
are characterized by the neuronal improvements of
fuzzy systems as well as the fuzzification of
neural network systems are applied in this work.
The fuzzy neural networks aim at exploiting the
complementary nature of the two approaches; the
fuzzy and neural network systems.

The number of the input signals to a fuzzy
neural network had better be reduced to save the
time necessary to train the fuzzy neural network.
Principal component analysis (PCA)[13,14] is used
to reduce the dimension of an input space without
losing a significant amount of information. Also,
PCA has the characteristics to reduce the excessive
sensitivity of the fuzzy neural networks to input
parameter change. Fuzzy system parameters such
as membership functions and the connectives
between layers in neural networks are trained by
two methods to minimize the errors (root mean
squared error and/or maximum error) between the
target values and the estimated values. A
back-propagation algorithm is applied to optimize
the membership function parameters and a
least-squares algorithm to optimize the connectives
between network layers.

To train and test the fuzzy neural networks,
should be
provided. These data are obtained by performing a

the collapse moment-related data

finite element analysis for various loading
conditions and defect geometries such as the
thinning defect locations of extrados and intrados,
bend radius, wall thickness at the thinning defect,

thinning length, thinning angle, internal pressure,

and bending modes of closing and opening. The
collapse moment is predicted using these loading
conditions and defect geometries as the inputs into

the fuzzy neural networks.

2. Calculation of Collapse Moment Using
Finite Element Analysis

2.1. Analysis Condition

In order to evaluate the collapse load of wall

thinned elbows, the carbon steel elbow that has
outer radius (Do) of 400 mm and nominal

thickness (fwn) of 20 mm was selected (refer to
Fig. 1). Yield stress and ultimate tensile stress of
selected material of elbow are 302 MPa and
450 MPa, and the

Poisson ratio are 206 GPa and 0.3, respectively.

and the elastic modulus
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Fig. 1 Definition of dimensions of wall thinning

defect in elbows

In the analysis, various loading conditions and
defect geometries were considered as summarized
in Table 1. In the loading condition, the moment
was applied by end point displacement under a
constant internal pressure until the stress of wall
thinned area exceeds the ultimate tensile stress or
the reaction force is reduced.

A three dimensional quarter model with
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20-node brick element was considered in the
The

represents a quarter portion of an elbow that

finite element analysis. quarter model
consists of the semicircle at the circumference
and a half long in length by cutting out a plane
perpendicular to the flow direction at the center
bending position of elbow (refer to Fig. 2). The
analysis was performed using a commercial finite

element program, ABAQUS [15].

Fig. 2 A quarter model for the finite element

analysis

2.2. Collapse Moment

In this analysis, both local and global stress
criteria were employed as failure criteria for a
collapse moment of wall thinned elbow subjected
to combined internal pressure and bending
moment. Firstly, thus, the collapse moment was
determined by local stress criterion assuming that
the collapse occurs when the local stress at
thinning defect exceeds the ultimate tensile stress
of material. Additionally, the collapse moment

was determined by the global stress criterion that

determines the collapse moment by twice elastic
slope method[16]. Then the lower value of these
selected as collapse

collapse moments was

moment.

3. Principal Component Analysis

PCA is usually used to reduce the number of
input variables into the fuzzy neural networks.
The lower dimensional input space has a merit to
reduce the time necessary to train the fuzzy
neural networks. PCA can facilitate the selection
of the input signals to the neuro-fuzzy inference
system. Also, PCA has the characteristics to
reduce the excessive sensitivity of the fuzzy
neural networks to input parameter change
because it has the characteristics of smoothing
signals and eliminating noises. In this work, the
main purpose of PCA application is to reduce
the sensitivity.

PCA is to map a multi-dimensional data set
into a lower dimensional space while minimizing
the loss of information. The basic idea is to
project the original space X onto a lower
dimensional linear subspace Z spanned by the
matrix

eigenvectors of the  covariance

corresponding to the largest eigenvalues. Given a

set of signals X=lx x, A pr where X is
a "XP matrix of which elements consist of n
samples of p signals, its true covariance matrix
is replaced with the sample covariance matrix S
because it is seldom known. The eigenvalues and

the orthonormal eigenvectors of the covariance

Table 1 Analysis conditions for wall-thinning elbow
Thinning Bend Radius Defect Geometry Load T
Location (Ro/Rr) L/D, tlt,,, o/n Bending Mode Pressure[MPa]
Extrados 3.0 0.25 0.233 0.0626 Closing
Intrados 6.0 05 0.466 0.125 Opening
1.0 0.699 025 10
2.0 0.50 15
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matrix S are calculated, and then the eigenvalues
are arranged according to their
A2 2A2A, The

magnitude,

respective  eigenvectors
P1, P2,-*-,Pp are called the principal components.
The eigenvalues are proportional to the amount
of wvariance (information) represented by the
corresponding principal component. The
transformation to the principal component space

can be written as:

Z=XP (1)

where Z=[z,z,Az, ] and P={p,p:A p,,]

The feature matrix Z can be transformed
back into the original data X without a loss of
information as long as the number of features, m,
is equal to the dimension of the original space,
p. For m<p, some information is usually lost.
The objective is to choose a small m that does
not lose much information. In this work, the
feature vector that is calculated by Eq. (1) is

used as inputs to the fuzzy neural networks.
4. Fuzzy Neural Networks

The fuzzy inference system is constructed
from a collection of fuzzy if-then rules. An
artificial neural network is usually defined as a
network composed of a large number of simple
processors  (neuron) that are  massively
interconnected, operate in parallel and learn from
experience. A system that consists of a fuzzy
inference system implemented in the framework
of neural network is usually called an adaptive
network-based fuzzy inference system (ANFIS)
or fuzzy neural networks [17] In this work, the
fuzzy neural network is used to predict the
collapse moment of the wall-thinned elbows and
the training of the fuzzy neural network is
accomplished by a hybrid method combined with
a back-propagation algorithm and a least-squares
algorithm. Also, a Sugeno-Takagi type [18] fuzzy
inference system is used where the i-th rule can

be described as follows:

If x, is A, AND A AND x, is A

i

then $"is f'(x,,A , x,),
2)

where x; is the input variables to the fuzzy
neural network (=1, 2, .., m;m = the number
of input variables), 4; the membership functions
for the antecedent of the i-th rule and j-th input
(i=1, 2, .., n;n= the number of rules), and 3
the output of the i-th rule.

In Eq. (2), the if part is fuzzy linguistic,
while the then part is
fi(x],/\ s X)) s

variables but it can be any function as long as it

crisp.  Usually

a polynomial in the input
can appropriately describe the output of the
fuzzy inference system within the fuzzy region
specified by the antecedent of the rule. In this
work, the Gaussian

symmetric membership

function is used. The output of an arbitrary i-th

rule, i , consists of the first-order polynomial of

inputs as given in Eq. (3).
FrxA x,) =D 4%+, 3)
j=1

where g; is the weighting value of the j-th input
on the i-th rule output and #; is the bias of the
i-th output. So the fuzzy inference rule expressed
by Egs. (2) and (3) is called a first-order
Sugeno-Takagi type fuzzy rule.

The estimated output of a fuzzy inference
system for a specific case k is expressed by a
weighted sum of the consequent of all the fuzzy

rules:
J.=2 W[ =wq @
i=l

where
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w =114,
j=l

q=[g,A g, A A g, A g, rA T,

—1 — — — — —a |7
w, =[w KA WA AW, A W'x, WA w"] .

For a series of different cases, the estimated

output is given by

y=Wq, &)

yz[,% )A’zA )A’N]T
Wz[wl w, A WN]T.

q is called the consequent parameter vector and
the matrix W consists of the input data and the
membership function values. A series of the
estimated outputs of the fuzzy neural network is
represented by the N X (m+ 1)n-dimensional
matrix W and the (m + 1)n-dimensional parameter
vector q.

The back-propagation algorithm that uses a
gradient descent method is a general method for
recursively training the fuzzy neural networks.
The gradient descent method tunes the antecedent
parameters (the center position of membership
functions and their sharpness) so that the
predefined objective function E is minimized. In
order to train an antecedent parameter a;, the

following iterative calculation is used:

oE
a,-,-(t+1)=ai,-(t)—n,,@|, (6)
Y 2
B E= -5
where ,Z:l‘(y" yk) ,i=1,2,.,m, j=1,2,..,
m, t=0,1,2,.., and 7. is a learning rate for a

parameter a. The gradient descent method is very
stable when the learning rate is small but
susceptible to local minimum.

If the antecedent parameters of the fuzzy
inference system are fixed by the back-propagation

algorithm, the resulting fuzzy neural networks is
equivalent to a series of expansions of some
basis functions. This basis function expansion is
linear in its adjustable parameters. Therefore, the
least-squares method is used to determine the
remaining parameters (consequent parameters g
and » ). If a total number of N input-output
(5) the

consequent parameters are chosen to minimize

training data are given, from Eq.

the following cost function including the squared

error between the target output and the estimated

output:
1 A
J==(y-§) (7
2
where

f’zBﬁ )A’zA )A’N]T,
y=b Ayl

¥ is the estimated output and y is the output
data vector which is used as target outputs.
The equation for minimizing the cost

function is as follows:

y=Wq, ¥

The parameter vector q in Eq. (8) is solved by
using the pseudo-inverse of the matrix W.

5. Application to the Collapse Moment
Estimation

As described in Section 2, finite element
analysis was performed to provide the training
data and test data for each loading condition and
defect
networks. The provided data comprise a total of

geometry case to the fuzzy neural

1536 input-output data pairs (xl’XZ’A’x6’yr).
The characteristic of the collapse moment is
much different according to the two thinning
defect
Therefore, the data are classified into two classes

locations of extrados and intrados.
and two fuzzy neural networks are designed for

the two classes, respectively. x; through x; are
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the input signals that represent the bend radius,
wall thickness at the thinning defect, thinning
length, thinning angle, internal pressure, and
bending modes of closing and opening. y, is the
which collapse
moment. Also, the data are divided into the

training and test data sets. The test data set

output  signal indicates the

comprise one tenth of the acquired input-output
data pairs and the training data set consists of
the remaining data. The ranges of the input and
output signals that are used for the training and
test data, in this work, are described in Table 1.

The two fuzzy neural networks are trained
for two kinds of data sets divided into both the
extrados  and defect
respectively, which has smaller errors compared
with results using only one data set. Both the
numbers of rules

intrados locations,

of the two fuzzy neural
networks are 35. The antecedent parameters such
as membership function parameters are optimized
by the method and the

consequent parameters g; and » are optimized by

back-propagation

the least-squares method. The inputs to the fuzzy
neural networks are preprocessed by PCA and
the transformed input signals are applied to the
fuzzy neural networks.

Figure 3 shows the collapse moment and its
estimation error histograms of the training and
test data for extrados defects. The error
histogram resembles the Gaussian distribution.
Based on this distribution, the relative 2-sigma
errors are 2.81% for the training data and 2.69%
for the test data. The magnitude of these two
relative errors is almost the same. Figure 4
shows the collapse moment and its estimation
error histograms of the training and test data for
intrados defects. The relative 2-sigma errors are
3.36% for the training data and 5.16% for the
test data. Figure 5 shows the collapse moment
and its estimation errors of the training and test
data in case that both the extrados and intrados

defects

are considered together. The relative

2-sigma errors are 3.07% for the training data

and 4.12% for the test data. From this figure, it
is shown that although the maximum error is
large at some defect cases, the maximum error
can decrease if the defect conditions change a
little during the collapse moment monitoring.
Table 2 summaries the estimation results of
collapse moments by the fuzzy-neural networks. It
is important to verify the fuzzy neural networks for
the test data that have not been used in the training
stage. It is known that the 2-sigma error of the
fuzzy neural networks for the test data is similar to
the 2-sigma error for the training data. Therefore, if
the fuzzy neural networks are trained first using
data for a variety of loading conditions and defect
geometry cases, they can accurately estimate the
collapse moment for any other defect -cases.

6. Conclusions

In this paper, fuzzy neural networks have
been used to estimate the collapse moment due
to the wall-thinning defects of elbows in piping
systems. The developed fuzzy neural networks
have been applied to the numerical data obtained
by the finite element analysis. PCA was used to
preprocess the input signals to the fuzzy neural
network and the fuzzy neural networks were
trained by using the data set prepared for
training (training data) and verified by using
another data set (test data) different (independent)
from the training data. Also, two fuzzy neural
networks were trained for two data sets divided
into the two classes of extrados and intrados
defects. The relative 2-sigma errors are 3.07%
for the training data and 4.12% for the test data.
The 2-sigma error of the fuzzy neural networks
for the test data is similar to the 2-sigma error
for the training data. Therefore, if the fuzzy
neural networks are trained first by using a
number of data including a variety of loading
conditions and defect geometry cases, they can
accurately estimate the collapse moment for any
other defect cases.
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Table 2 Estimation results of collapse moment by the fuzzy-neural networks

Training data Test data
Relative maximum Relative 20 Relative maximum Relative 20
error(%) error(%) error(%) error(%)
Extrados defects 14.49 2.81 448 2.69
Intrados defects 12.02 3.36 12.01 5.16
Total 14.49 3.07 12.01 412
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